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Safe Zeroth-Order Convex Optimization Using Quadratic Local

Approximations

Baiwei Guo, Yuning Jiang, Maryam Kamgarpour, Giancarlo Ferrari-Trecate

Abstract— We address black-box convex optimization prob-
lems, where the objective and constraint functions are not
explicitly known but can be sampled within the feasible set.
The challenge is thus to generate a sequence of feasible points
converging towards an optimal solution. By leveraging the
knowledge of the smoothness properties of the objective and
constraint functions, we propose a novel zeroth-order method,
SZO-QQ, that iteratively computes quadratic approximations
of the constraint functions, constructs local feasible sets and
optimizes over them. We prove convergence of the sequence of
the objective values generated at each iteration to the minimum.
Through experiments, we show that our method can achieve
faster convergence compared with state-of-the-art zeroth-order
approaches to convex optimization.

I. INTRODUCTION

Applications ranging from energy resources operation [1],

machine learning [2] and trajectory optimization [3] to

optimal control tuning [4] often require solving complex

optimization problems where the fulfillment of the hard

constraints is essential. In case the modelling of the objective

and constraint functions is not available or the given data

from safe system operation is not sufficient for modelling,

zeroth-order optimization methods can be used to derive the

optimum without violation of constraints. The methods of

this category only rely on the possibility of sampling the

unknown objective and constraint functions evaluated at a

set of chosen points [5]. The decision variables are then

iteratively updated using the collected evaluations.

Classical techniques for zeroth-order unconstrained op-

timization can be classified as direct-search-based (where

a set of points around the current point is searched for

a lower value of the objective function) and model-based

(where a local model of the objective function around the

current point is built and used for local optimization) [6,

Chapter 9]. Examples for these two categories are, respec-

tively, pattern search methods [7] and trust region methods

[8]. For constrained problems, a common approach is to

include in the cost barrier functions penalizing constraint

violations so as to cast the constrained optimization problem

into an unconstrained one [9], [10]. By adopting log barrier

functions to penalize the proximity towards the boundary
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of the feasible set, Extremum Seeking methods estimate the

gradient of the new objective function by adding sinusoidal

perturbations to the decision variables [11]. However, most

penalty-based methods lack a mechanism to tune the penalty

coefficients for ensuring feasible sampling.

To guarantee feasible sampling with a high probabil-

ity, [12] proposes an iterative algorithm, called SafeOpt, that

expands the estimated feasible set by modeling the con-

straints as Gaussian processes. However, the computational

complexity of this algorithm scales exponentially with the

number of the decision variables. To address this issue, a

gradient-descent penalty-based approach, called s0-LBM, is

proposed in [13]. This method exploits the constraint func-

tions’ smoothness to calculate the step size of the descent.

Although this method can address non-convex problems

and comes with a worst-case complexity that is polynomial

in problem dimension, it might converge slowly, even for

convex problems. The reason is that as the iterates approach

the boundary of the feasible set, the log-barrier function and

its derivative become very large, leading to very conservative

local feasible sets that result in slow progress of the iterates.

The work [14] addresses the zeroth-order optimization of

convex objectives subject to unknown polytopic constraints.

It ensures sampling feasibility by estimating the polytope

iteratively and constructing confidence bounds for the es-

timates. While the optimization algorithm in [14] enjoys

faster convergence than [13], the approach is not readily

generalizable to nonlinear constraints.

Contributions: In this work, we aim to solve convex

optimization problems based on Lipschitz and smoothness

constants instead of the exact knowledge of the objective

and constraint functions. To achieve fast convergence, we

approximate the constraint functions with known quadratic

functions (in contrast to the affine approximation used in

[12], [13]) and tackle the optimization problem by solving

a series of known Quadratically Constrained Quadratic Pro-

grams (QCQP). Our main contributions are summarized as

follows:

1) a method to construct local feasible sets, which is

less conservative than those in [12], [13] when the

subproblem solutions are close to the boundary of

the original feasible set. To this purpose we use local

quadratic approximations of the constraints based on

the knowledge of the Lipschitz constants of the con-

straints’ gradients;

2) a zeroth-order optimization algorithm where sampling

feasibility is guaranteed and the objective function

values provably converge to the minimum;
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3) numerical examples comparing the speed of conver-

gence of our method with state-of-the-art alternative

approaches as well as an application of the proposed

algorithm to an optimal control problem.

Notations: We use ei ∈ R
d to define the i-th standard

basis of vector space R
d. Given a vector x ∈ R

d and a

scalar ǫ > 0, we write x = [x(1), . . . , x(d)]⊤ and Bǫ(x) =
{y : ‖y − x‖ ≤ ǫ}, where ‖ · ‖ is the 2-norm. We define

Z
j
i = {i, i+ 1, . . . , j}.

II. PROBLEM FORMULATION

We address the constrained convex optimization problem

min
x∈Rd

f0(x) subject to x ∈ Ω, (1)

where Ω := {x ∈ R
d : fi(x) ≤ 0, i ∈ Z

m
1 } is the feasible

set. We consider the setting where the convex functions fi :
R

d → R, i ∈ Z
n
1 , are not explicitly known but they can

be queried within Ω. We further assume, without loss of

generality, the convex objective function f0(x) is explicitly

known and linear. Indeed, when the convex function f0(x)
in (1) is not known but can be queried, the problem in (1)

can be written as

min
(x,γ)∈Rd+1

γ

subject to f0(x) − γ ≤ 0,

fi(x) ≤ 0, i ∈ Z
m
1 ,

where the objective function is now known and linear.

We also consider the following assumptions on the

smoothness of the objective and constraint functions and the

availability of a strictly feasible point.

Assumption 1 The functions fi(x), i ∈ Z
m
0 are continu-

ously differentiable and satisfy for any x1, x2 ∈ R
d,

|fi(x1)− fi(x2)| ≤ Li‖x1 − x2‖,
‖∇fi(x1)−∇fi(x2)‖ ≤Mi‖x1 − x2‖.

(2)

In the following, we use the notation Lmax := maxi≥1 Li,

Mmax := maxi≥1 Mi, Li,inf := inf{L : ‖fi(x1)− fi(x2)‖ ≤
L‖x1 − x2‖, ∀x1, x2 ∈ Ω} and Mi,inf := inf{M :
‖∇fi(x1)−∇fi(x2)‖ ≤M‖x1 − x2‖, ∀x1, x2 ∈ Ω}.

Remark 1 The bounds in (2) are utilized in several works

on zeroth-order optimization, e.g., [15], [16]. As it will be

clear in the sequel, these bounds allow one to estimate the

error of local approximations of the unknown functions and

their derivatives. Moreover, our method does not require to

precisely know Li,inf and Mi,inf, but only upper bounds to

their values, see Remark 4.

Assumption 2 There exists a known strictly feasible point

x0, i.e., fi(x0) < 0 for all i ∈ Z
m
1 .

Remark 2 The existence of a strictly feasible point is called

Slater’s Condition and commonly assumed in several op-

timization methods [17]. Moreover, several works on safe

learning [12], [14] assume that a strictly feasible point

is given to initialize the algorithm. This is necessary for

designing an algorithm whose iterates remain feasible since

the constraint functions are unknown a priori. Practically,

this assumption holds in several applications. For example,

in any robot mission planning, the robot is placed initially at

a safe point and needs to gradually explore the neighboring

regions while ensuring feasibility of its trajectory. Similarly,

in the optimization of manufacturing processes, often an

initial set of (suboptimal) design parameters that satisfy the

problem constraints are known [18].

Assumption 3 There exists β ∈ R such that the sublevel set

Pβ = {x ∈ Ω : f0(x) ≤ β} is bounded and includes the

initial feasible point x0.

The above assumption ensures the iterates remain bounded

and have a convergent subsequence (due to compactness of

Pβ) as will be shown in Theorem 2.

Based on the aforementioned assumptions and properties,

in the next section we design an algorithm that iteratively

optimizes f0(x) over local safe sets constructed by exploiting

Assumption 1 on smoothness.

III. THE PROPOSED ZEROTH-ORDER ALGORITHM

Here, we propose an approach to construct local feasible

sets around a given feasible point using function queries.

To do so, we first recall properties of a gradient estimator

constructed through finite differences.

The gradients of the unknown functions {fi}mi=1 can be

approximated through finite differences as

∇νfi (x) :=

d
∑

j=1

fi (x+ νej)− fi (x)

ν
ej (3)

with ν > 0. The estimation error is denoted as

∆ν
i (x) := ∇νfi (x)−∇fi(x).

From (2), we have the following result.

Lemma 1 ( [19], Theorem 3.2) Under Assumption 1, the

gradient estimation error at x ∈ R
d can be bounded as

‖∆ν
i (x)‖2 ≤ αiν, with αi =

√
dMi

2
. (4)

A. Local feasible set construction

Based on the estimated gradient and the error bound above,

we build a local feasible set around a feasible point x0.

Theorem 1 For any strictly feasible point x0, let l∗ =
mini=1,...,m−fi(x0)/Lmax and ν∗ = 2l∗/

√
d. Define

S◦i (x0) :=
{

x : fi(x0) +∇ν∗

fi (x0)
⊤
(x− x0)+

2Mi‖x− x0‖2 ≤ 0
}

.
(5)

Under Assumption 1, the set S◦(x0) :=
⋂m

i=1 S◦i (x0) satis-

fies S◦(x0) ⊂ Ω.



Proof. We first partition S◦i (x0) as

S◦i (x0) =
(

S◦i (x0)
⋂

Bl∗(x0)
)

⋃

(S◦i (x0) \ Bl∗(x0))

and notice that S◦i (x0)
⋂Bl∗(x0) ⊆ Ω. Then, it only remains

to check that S◦i (x0) \ Bl∗(x0) ⊆ Ω.

For x ∈ S◦i (x0)\Bl∗(x0), we have
√
dν∗

2 = l∗ ≤ ‖x−x0‖.
By the mean value theorem, for any i there exists θi ∈ [0, 1]
such that

fi(x) =fi(x0) +∇fi (x0 + θi(x − x0))
⊤
(x− x0)

=fi(x0) +∇fi (x0)
⊤
(x− x0)+

(∇fi (x0 + θi(x− x0))−∇fi (x0))
⊤
(x− x0)

≤fi(x0) +∇ν∗

fi (x0)
⊤
(x− x0)

+

√
dν∗Mi

2
‖x− x0‖+Mi‖x− x0‖2

≤fi(x0) +∇ν∗

fi (x0)
⊤
(x− x0) + 2Mi‖x− x0‖2

≤0,
(6)

where the first inequality is due to Assumption 1 while the

second can be derived according to the definition of ν∗ in

Theorem 1. Hence, S◦i (x0) \ Bl∗(x0) ⊆ Ω. Since S◦i (x0) ⊆
Ω, ∀i, then S◦(x0) ⊆ Ω. �

By construction, we see that if x0 is strictly feasible, then

it belongs to S◦(x0). Moreover, the set S◦(x0) is convex

since S◦(x0) = ∩mi=1S◦i (x0) and, for any i, S◦i (x0) is a

d-dimensional ball. In the sequel, we call S◦(x0) a local

feasible set around x0.

Remark 3 The works [12], [13] consider an alternative

approximation of the functions and a local feasible set

C(x0) :=
m
⋂

i=1

{

x : ‖x− x0‖ ≤ −
fi(x0)

Lmax

}

.

We see that C(x0) = {x : FL
i (x) ≤ 0, ∀i} where FL

i (x) :=
fi(x0)+Lmax‖x−x0‖. In contrast, S◦(x0) = {x : FM

i (x) ≤
0, ∀i} where FM

i (x) := fi(x0) + ∇ν∗

fi (x0)
⊤
(x − x0) +

2Mi‖x− x0‖2. One can easily verify that FM
i (x) < FL

i (x)
when ‖x − x0‖ is sufficiently small. If x0 is close to the

boundary of the feasible set, the distance ‖x− x0‖ is small

for any x ∈ C(x0) and thus C(x0) ⊂ S◦(x0) due to

FM
i (x) < FL

i (x). We illustrate this point in Example 1. The

above analysis reveals why S◦(x0) can be less conservative

than C(x0), which constitutes the main reason for which our

method can achieve faster convergence than [13].

Example 1 Consider the optimization problem (1) with d =
1, m = 2, f0(x) = 3x, f1(x) = x2 − x − 0.75 and

x0 = 1.49, which is close to the boundary of the feasible

set [−1, 1.5]. We let Lmax = 3.01 and Mmax = 3, then

T (x0) = [1.4836, 1.4964]⊂ S◦(x0) = [1.1502, 1.4998].

B. The proposed algorithm

The proposed method to solve problem (1) is summa-

rized in Algorithm 1. The main idea is to start from the

strictly feasible initial point x0 and iteratively solve (∗) in

Algorithm 1, which is a convex Quadratically Constrained

Quadratic Program (QCQP), until the distance ‖xk+1 − xk‖
is smaller than a given threshold ξ > 0 (see Line 6-8). By

using the penalty term µ‖x− xk‖2 in (∗), we can guarantee

that the increment ‖xk+1−xk‖ diminishes and Algorithm 1

terminates as shown later in Theorem 2.

Algorithm 1 Safe Zeroth-Order Sequential QCQP (SZO-

QQ)

Input: µ > 0, ξ > 0, initial feasible point x0 ∈ Ω
Output: x̃

1: Choose Mi > Mi,inf, for i ∈ Z
m
1

2: k ← 0, TER = 0
3: while TER = 0 do

4: Compute S(xk) based on (5) and (7).

5: xk+1 = argminx∈S(xk)
f0(x)+µ‖x−xk‖2 (∗)

6: if ‖xk+1 − xk‖ ≤ ξ then

7: x̃← xk+1, TER← 1
8: end if

9: k ← k + 1
10: end while

The construction of S(xk) is based on Theorem 1. We let

S(xk) =
⋂m

i=1 Si(xk) where Mi > Mi,inf ,

l∗k = min
i

−fi(xk)

Lmax
, ν∗k = min{ 2l

∗
k√
d
,
1

k
}. (7)

and

Si(xk) :=
{

x : fi(x0) +∇ν∗

kfi (x0)
⊤
(x− x0)+

2Mi‖x− x0‖2 ≤ 0
}

.
(8)

By requiring Mi > Mi,inf , we guarantee that ∀k, xk is

strictly feasible (see the proof of Theorem 1). Thanks to

(7), we can ensure that the gradient approximation error

goes to 0, which is essential for the convergence analysis

in Theorem 2.

Remark 4 To run Algorithm 1, we need to set Li > Li,inf

and Mi > Mi,inf for i ≥ 1. Here, we discuss the effect

of under/overestimating Li,inf and Mi,inf . If Li < Li,inf or

Mi < Mi,inf , the set S(xk) built according to (7) and (8)

might not be feasible. Consequently, when infeasible samples

happen, one can increase Li and Mi for i ≥ 1 by a certain

factor. At the same time, one should avoid too large a value

for Mi, since if Mi ≫ Mi,inf , the approximation used

to construct S(xi) can be very conservative and thus the

convergence of Algorithm 1 can become much slower.

Algorithm 1 is similar to Sequential QCQP (SQCQP) [20],

where at each iteration quadratic proxies for both the objec-

tive and constraint functions are built based on the local gra-

dient vectors and Hessian matrices. Applications of SQCQP

to optimal control have received increasing attention [21],

[22], due to the development of efficient solvers for QCQP

subproblems [23]. Different from SQCQP [20], Algorithm 1,

which we also call SZO-QQ in the remainders, can guarantee

feasible sampling and does not require line search, which is



costly due to the required generation of extra examples. Due

to the lack of line search, Algorithm 1’s convergence cannot

be proved by simply following the arguments in [20].

IV. THEORETICAL CONVERGENCE ANALYSIS

In this section, we first consider the sequence {xk}k≥1

generated by Algorithm 1 without the termination condi-

tion. We show that under mild assumptions, the sequence

{f0(xk)}k≥1 converges to the minimum objective value of

(1). Then, we discuss the choice of the termination condition

and the required number of iterations for the algorithm to

stop.

A. Objective value converging to minimum

We let ξ = 0, which is to say the termination condition

‖xk+1−xk‖ ≤ ξ in Algorithm 1 is omitted. We characterize

the limit of the sequence {f0(xk)}k≥1 generated by the

algorithm in the following theorem.

Theorem 2 Under Assumption 1-3, if ξ = 0, the sequence

{xk}k≥1 in Algorithm 1 has the following properties:

1. the sequence {f0(xk)}k≥1 is non-increasing;

2. the sequence {xk}k≥1 has at least one accumulation

point xc
1;

3. for any accumulation point xc of the sequence,

limk→∞ f0(xk) = f0(xc) > −∞.

The proof of Theorem 2, provided in Appendix A, leverages

the optimality of the solution to the subproblem (∗) in

Algorithm 1, the boundedness of the sublevel set Pβ required

by Assumption 3 and the continuity of f0(x).
In view of point 3 of Theorem 2, to show that {f0(xk)}k≥1

converges to the minimum objective value of (1), we need

to show there exists an accumulation point xc of {xk}k≥1

that is the optimum of (1). We now address the optimality

of any accumulation point xc in Theorem 3 below.

Assumption 4 There exists an accumulation point xc such

that ∇fi(xc) 6= 0, ∀i ∈ A(xc), where A(xc) := {i :
fi(xc) = 0}

Remark 5 For proving the convergence of Interior Point

Methods [6, Theorem 19.1], one often assumes the Linear

Independence Constraint Qualification (LICQ), requiring

that vectors∇fi(xc) for i ∈ A(xc) are linearly independent.

Note that Assumption 4 is weaker than LICQ because if there

exists i0 ∈ A(xc) such that ∇fi0(xc) = 0 then the vectors

∇fi(xc) for i ∈ A(xc) cannot be linearly independent.

Theorem 3 Under Assumptions 1-4, any accumulation point

xc is an optimizer of problem (1).

The complete proof of Theorem 3 can be found in Ap-

pendix D. Below, we provide an outline of it, which is based

1Theorem 2 does not imply that {xk}k≥1 is convergent. For this property
to hold, a sufficient condition is

∑∞
k=0 ‖xk − xk+1‖ < ∞. However, in

the proof of Theorem 2, we have only been able to show a weaker condition,
namely,

∑∞
k=0

‖xk − xk+1‖
2
< ∞.

on the following optimality conditions for the constrained

optimization problem (1) as stated below.

Definition 1 ( [24]) A pair (x, λ) with x ∈ Ω and λ ∈ R
m
≥0

is a η−approximate KKT (also written as η−KKT) point

with η > 0 of Problem (1) if it fulfills

‖∇f0(x) +
m
∑

i=1

λ(i)∇fi(x)‖ ≤ η,

|λ(i)fi(x)| ≤ η, i ∈ Z
m
1 .

(9)

If (x∗, λ∗) with x∗ ∈ Ω and λ∗ ∈ R
m
≥0 fulfills (9) with η = 0,

we say that it is a KKT point.

We notice that due to Slater’s Condition, x∗ is a minimizer

of (1) if and only if there exists λ∗ ∈ R
d
≥0 such that (x∗, λ∗)

is a KKT point of (1).

Sketch of the proof of Theorem 3: Let xc be an accumulation

point of {xk}k≥1 such that ∇fi(xc) 6= 0, ∀i ∈ A(xc) (see

Assumption 4). Since xk is feasible for any k and Ω, the

point xc belongs to Ω. If ∇f0(xc) = 0, then with λc = 0,

the pair (xc, λc) is a KKT point and thus xc is a minimizer.

Now, we consider∇f0(xc) 6= 0. It follows that that the active

set A(xc) = {i : fi(xc) = 0} is not empty (see Lemma 2 in

Appendix B for the rigorous statement). We can then show

the optimality of xc through contradiction as follows.

We assume xc is not a minimizer and let xs ∈ Ω be such

that f0(xs) < f0(xc). We denote the line segment between

xc and xs as x(t) := xc + t(xs− xc), t ∈ [0, 1]. By utilizing

Lemma 2 in Appendix B, we can find t̄ ∈ (0, 1) such that

any 0 < tp < t̄ verifies x(tp) belonging to the interior of

S(xc) and f0(x(tp)) + µ‖x(tp) − xc‖2 < f0(xc). For this

tp and any τ > 0, there exists kp > 0 verifying ‖xkp
−

xc‖ ≤ τ and x(tp) ∈ S(xkp
) (see Lemma 3 in Appendix

C for the rigorous statement). By letting τ be sufficiently

small, we have f0(x(tp))+µ‖x(tp)−xkp
‖2 < f0(xc). Since

xkp+1 = argminx∈S(xkp)
f0(x) + µ‖x − xkp

‖2, we have

f0(xkp+1) + µ‖xkp+1 − xkp
‖2 ≤ f0(x(tp)) + µ‖x(tp) −

xkp
‖2 < f0(xc), which contradicts the monotonicity shown

in point 1 of Theorem 2. Thus, xc is a minimizer of (1).

B. Computational complexity analysis

The result in Theorem 3 is asymptotic, but in practice

only finitely many iterations can be computed. Algorithm

1 adopts the termination condition ‖xk+1 − xk‖ < ξ for

ξ > 0. The motivation for this particular stopping criteria

is as follows. With this condition, we expect that the KKT

point of the inner optimization problem (∗) in Algorithm

1 fulfills the approximate KKT conditions of the original

problem, namely (9). To see this point, for k = K − 1 we

consider the KKT point of the subproblem (∗), (xK , λK). If

the error term ‖xK−xK−1‖ is small, one can show that the

left-hand-side terms in (9) evaluated at (x, λ) = (xK , λK)
are also small.

Our next goal is to address whether the termination

condition ‖xk+1 − xk‖ < ξ is triggered in a finite number

of iterations. And if yes, how many iterations are needed.



Theorem 4 Under Assumption 1-4, the increment ‖xk+1 −
xk‖ converges to 0 as k → ∞. Moreover, K := inf{k :
‖xk+1 − xk‖ ≤ ξ} satisfies

K ≤ K =
f0(x0)− inf{f0(x) : x ∈ Ω}

µξ2
. (10)

Hence, Algorithm 1 terminates within K iterations.

Proof. Since xk+1 = argmin f0(xk)+µ‖x−xk‖2, we know

that f0(xk)− f0(xk+1) ≥ µ‖xk − xk+1‖2. Then, we have

f0(x0)− inf{f0(x) : x ∈ Ω} ≥ f0(x0)− f0(xk)

≥
k−1
∑

i=0

‖xi − xi+1‖2
(11)

for any k, where the first inequality is due to the monotonic-

ity of {f0(xk)}k≥1 (see Theorem 2) and the second one is

derived through a telescoping sum. Since, due to (11), the

sum
∑k

i=0 ‖xi − xi+1‖2 converges, the increment ‖xk −
xk+1‖2 goes to 0 as k → ∞. Since for k < K , f0(xk) −
f0(xk+1) ≥ µξ2, we have that f0(x0) − f0(xK) ≥ Kµξ2.

Hence, (10) holds. �

V. NUMERICAL RESULTS

In this section, we present numerical experiments to test

the performance of the SZO-QQ algorithm2.

A. Solving an unknown convex QCQP

To test SZO-QQ and compare it with existing zeroth-order

methods, we consider the following convex QCQP,

min
x∈R2

f0(x) = 0.1× (x(1))2 + x(2)

subject to f1(x) = −x(1) ≤ 0,

f2(x) = x(2) − 1 ≤ 0,

f3(x) = (x(1))2 − x(2) ≤ 0.

We assume that the functions fi(x), i = 1, 2, 3, are unknown

but their values can be measured and a strictly feasible initial

point x0 =
[

0.9 0.9
]⊤

is given. The unique optimum
[

0 0
]⊤

is not strictly feasible. Testing on this example

allows us to see whether Algorithm 1 stays safe and whether

the convergence is fast when the iterates are close to the

feasible region boundary.

We run SZO-QQ and compare its result with

that of s0-LBM [13], Extremum Seeking [11] and

SafeOptSwarm 3 [25]. Except Algorithm 1, s0-LBM

and SafeOptSwarm are provably safe for a high

probability during exploration. Only SZO-QQ and s0-

LBM require Assumption 1. For these two methods, by

trial and error (see Remark 4), we adopt Li = 5 and

Mi = 3 for any i ≥ 1. The penalty coefficient µ of

Algorithm 1 in (∗) is set to be 0.001. Both s0-LBM and

2All the numerical experiments have been executed on a PC with an Intel
Core i9 processor.

3SafeOptSwarm is a variant of SafeOpt (introduced in Section I). The
former adds heuristics to make SafeOpt in [12] more tractable for slightly
higher dimensions.

Extremum Seeking are log-barrier-based and we use the

reformulated unconstrained problem minx flog(x, µlog),
where flog(x, µlog) := f0(x) − µlog

∑4
i=1 log(−fi(x)), and

µlog = 0.001.

Fig. 1. Objective value as a function of computation time.

In Fig. 1, we show how the objective function values

decrease with the computation time. During the experiments,

none of the implementations violates the constraints. Regard-

ing the convergence to the minimum, we see that s0-LBM is

the fastest in the first 1.5 seconds, which is due to the low

complexity of each iteration. However, SZO-QQ achieves a

better solution afterwards. In the first 6 seconds, Algorithm 1

already shows a clear trend of convergence to the optimum,

which is consistent with Theorem 2.

s0-LBM slows down when the iterates are close to the

boundary of the feasible set (see Remark 3 and Example 1).

Meanwhile, the slow convergence of Extremum Seeking is

due to its small learning rate. The concept of learning rate is

analogous to the step size in gradient descent. If the learning

rate is large, the iterates might be brought too close to the

boundary of the feasible set and then the perturbation added

by this method (most visible in Fig. 1 between 5 sec and 6
sec) would lead to the violation of the constraints. These

considerations constitute the main dilemma in parameter

tuning for Extremum Seeking. In contrast, the exploration

of the unknown functions in SafeOptSwarm is based on

Gaussian Process (GP) regression models instead of local

perturbations. Since SafeOptSwarm does not exploit the

convexity of the problem, it maintains a safe set and tries

to expand it for finding the global minimum. This is why

many samples are close to the boundary of the feasible

set even though they are far away from the optimum. This

phenomenon is also observed in [26]. These samples along

with the computational complexity of GP regression are the

main reason of the slow convergence with SafeOptSwarm.

Moreover, we also run s0-LBM and Extremum Seeking

with different penalty coefficients µlog to check whether the

slow convergence is due to improper tuning. We see that

with larger µlog the performances of the log-barrier-based



methods deteriorates. This is probably because the optimum

of the unconstrained problem flog(x, µlog) deviates more

from the optimum (0, 0) as µlog increases. With smaller µlog,

the Extremum Seeking method leads to constraint violation

while the performance of s0-LBM barely changes.

B. Open-loop optimal control with unmodelled disturbance

This section shows an application of SZO-QQ for solv-

ing constrained optimal control problem. We consider a

non-linear system with dynamics xk+1 = Axk + Buk +

δ(xk)
[

1 0
]⊤

, where xk = [x
(1)
k x

(2)
k ]⊤ ∈ R

2 for k ≥ 0,

x0 =
[

1 1
]⊤

, the matrices

A =

[

1.1 1
−0.5 1.1

]

, B =

[

1 0
0 1

]

are known but the disturbance δ(x) := 0.1 ∗ (x(2))2 is

unmodelled. We aim to design the input uk for i = 0, . . . , 5,
to minimize the cost F({xk}0≤k≤5, {uk}0≤k≤5) :=
∑5

k=0

(

x⊤
k+1Qxk+1 + u⊤

k Ruk

)

where Q = 0.5 I2 and R =
2 I2 with identity matrix I2 ∈ R

2×2 while enforcing

‖xk‖∞ ≤ 0.7 and ‖uk‖∞ ≤ 1.5 for k ≥ 1. Since we assume

all the states are measured, we can evaluate the objective

and constraints. This constrained optimal control problem

represents a class of problems where a gap exists between the

assumed and true models and safety (i.e., system trajectory

verifying the constraints) is essential. These problems, called

Safe Learning Control Problem (SLCP), are surveyed in [27].

In this example, we assume to have a feasible sequence of

inputs {uk}0≤k≤5 (as in Assumption 2) that leads to a safe

trajectory and results in a cost of 6.81. Different from the

settings in the model-based methods [28], [29] for SLCP,

we don’t assume that the safe trajectory is sufficient for

identifying the disturbance δ(x) with small error bounds.

If the error bounds are huge, the robust control problems

formulated in [28], [29] may become infeasible.

If we only take into account the nominal model (i.e.,

neglect the nonlinear disturbance δ(x)), the optimal control

problem is a Quadratic Program. The minimal cost is 5.78

but the input sequence fails to satisfy the output constraints.

We consider applying SZO-QQ to sample only feasible

trajectories and derive a feasible solution that achieves a

low cost. To this aim, we utilize the known feasible input

sequence as the initial solution. By setting Li = Mi = 20
for i ≥ 1, µ = 10−4 and ξ = 10−4, we implement

Algorithm 1 to further decrease the cost resulting from the

initial trajectory and derive within 57 seconds of computa-

tion an input sequence that satisfies all the constraints and

achieves a cost of 5.96. This result is the same as that derived

through assuming the disturbance δ(·) is known and applying

the nonlinear programming solver IPOPT [30], which is

consistent with Theorem 3 on the convergence to a KKT

point. Moreover, if we set ξ = 3 ∗ 10−3, we derive, within

12 seconds, an input sequence that achieves a cost of 6.00,

which shows that one may greatly reduce the computational

time without ending up with a much larger cost.

Observe that the problem studied is not convex due to

the disturbance. A detailed analysis of the performance of

SZO-QQ for solving non-convex problems is left for future

work.

VI. CONCLUSIONS

For safe black-box convex optimization problems, we

proposed a method, SZO-QQ, using samples of the objective

and constraint functions to iteratively optimize over local

feasible sets. Each iteration of our algorithm involves a

QCQP subproblem, which can be solved efficiently. We

showed that one of the accumulation points of the iter-

ates is a minimizer. From the numerical experiments, we

see our method can be faster than existing ones including

s0-LBM, SafeOptSwarm and Extremum Seeking. The fast

convergence of the algorithm motivates several directions of

research, including the characterization of the suboptimality

for the solution returned by the algorithm, the theoretical

analysis of SZO-QQ when applied to non-convex problems

and the study of its performance when samples of the cost

function and the constraints are noisy.

APPENDIX

A. Proof of Theorem 2

Given any k, we have xk ∈ S(xk) and xk+1 =
argminx∈S(xk)

f0(x) + µ‖x− xk‖2. Thus,

f0(xk+1) + µ‖xk+1 − xk‖2
≤ f0(xk) + µ‖xk − xk‖2 = f0(xk).

Then for k ≥ 0, f0(xk) ≤ f0(x0) < β (see Assumption 3).

Now we know {xk}k≥1 is within the set Pβ . Due to

the continuity of the functions fi(x) for i ∈ Z
m
0 and the

boundedness of the set Pβ , the set Pβ is compact. Hence,

{xk}k≥1 has at least an accumulation point xc.

Since f0(x) is continuous and Ω is closed, infx∈Ω f0(x) >
−∞ and the non-increasing sequence (f0(xk))k≥1 converges

to infk f0(xk). Considering that xc is the limit point of a

subsequence, we have f0(xc) ≥ infk f0(xk). Due to the

fact that, for any k, f0(xc) ≤ f0(xk), we have f0(xc) ≤
infk f0(xk). Thus {f0(xk)}k≥1 converges to f0(xc).

B. Statement and proof of Lemma 2

Lemma 2 If xc is an accumulation point of the sequence

{xk}k≥1 and ∇f0(xc) 6= 0, the set A(xc) is nonempty.

Proof. We prove the lemma by contradiction. We assume

fi(xc) < 0 for all i and let (xkj
)j be the subsequence

converging to xc.

The first claim to prove is that for some rc > 0 there

exists jc such that, for any j > jc, Brc(xc) ⊂ S(xkj
). To

see this, we let jc be such that for any j ≥ jc and any i,

fi(xkj
) <

1

2
fi(xc),

2Lmax‖xc − xkj
‖+ 4Mmax‖xc − xkj

‖2 < −1

4
fi(xc).

(12)

Since νkj
converges to 0, ∇ν∗

kj fi
(

xkj

)

converges to

∇fi
(

xkj

)

. Thus, without loss of generality, we can assume,



for any j ≥ jc, ‖∇ν∗

kj fi
(

xkj

)

‖ ≤ 2Lmax. We also let rc > 0
be such that

2Lmaxrc + 4Mmaxr
2
c < −1

4
fi(xc).

Then, for any x′
c ∈ Brc(xc) and j ≥ jc we have

fi(xkj
) +∇ν∗

kj fi
(

xkj

)

(x′
c − xkj

) + 2Mi‖x′
c − xkj

‖2

<− 1

2
fi(xc) + 2Lmax‖x′

c − xkj
‖+ 2Mmax‖x′

c − xkj
‖2

<− 1

2
fi(xc) + 2Lmax‖xc − xkj

‖+ 4Mmax‖xc − xkj
‖2+

2Lmax‖xc − x′
c‖+ 4Mmax‖xc − x′

c‖2

<− 1

2
fi(xc) +

1

4
fi(xc) +

1

4
fi(xc) = 0,

where the second inequality is due to the triangle inequality

while the third is derived using (12). This means for any

j ≥ jc we have Brc(xc) ⊂ S(xkj
).

The second claim is that in Brc(xc) we can find x such

that f0(x) + µ‖x − xc‖2 < f0(xc). To see this we let x =
xc− t∇f0(xc), where t ∈ R≥0 is a parameter. From (6), we

have that

f0(x) ≤ f0(xc) +∇f0(xc)
⊤(x− xc) +M0‖x− xc‖2

= f0(xc)− t‖∇f0(xc)‖2 + t2M0‖∇f0(xc)‖2.
Hence, for t < min{(M0 + µ)−1, rc/|∇f0(xc)|}, we have

f0(x) + µ‖x− xc‖2 < f0(xc).

Therefore, there exists jc ≥ 1 such that, for any j ≥ jc,

f0(x) + µ‖x− xkj
‖2 < f0(xc). Since x ∈ S(xkj

), we have

f0(xkj+1) + µ‖xkj+1 − xkj
‖2

≤f0(x) + µ‖x− xkj
‖2 < f0(xc).

which leads to the fact that f0(xkj+1) < f0(xc) and

lim
k→∞

f0(xk) < f0(xc),

This result contradicts Theorem 2. Thus, A(xc) is not empty.

�

C. Statement and proof of Lemma 3

Lemma 3 If xc is not an optimum, ∇f0(xc) 6= 0 and

Assumption 4 is verified, the following properties hold:

• There exists xs ∈ Ω such that f0(xs) < f0(xc) and

∇fi(xc)
⊤(xs − xc) < 0, ∀i ∈ A(xc);

• Define x(t) := xc + t(xs − xc), t ∈ [0, 1] where xs

was given above. Then, there exists t̄ ≤ 1 such that, for

0 < t < t̄, f0(x(t)) + µ‖x(t)− xc‖2 < f0(xc);
• There exists 0 < tp < t̄ such that, for any τ > 0 and

k0 ∈ Z≥1, we can find kp > k0 satisfying ‖xkp
−xc‖ ≤

τ and x(tp) ∈ S(xkp
).

Proof. Convexity of Ω along with Assumption 2 on strict

feasibility leads to the following property.

Property 1 For any x ∈ Ω and any r > 0, there exists an

interior point of Ω in Br(x), i.e., there exists x′ ∈ Br(x) and

r′ > 0 such that Br′(x′) ⊂ Ω.

If xc is not a minimizer, we let xs ∈ Ω be such that

f0(xs) < f0(xc). According to Property 1 and the assump-

tion that ∇fi(xc) 6= 0 for i ∈ A(xc), we can find an interior

point x′
s in the neighborhood of xs such that f0(x

′
s) <

f0(xc) and another point x′′
s ∈ Ω in the neighborhood of

x′
s such that f0(x

′′
s ) < f0(xc) and −∇fi(xc)

⊤(x′′
s − xc) 6=

0, ∀i ∈ A(xc). Since x(t) := txc + (1 − t)x′′
s ∈ Ω for

0 < t < 1, there exists g(t) such that

lim
t→∞

g(t)

t
= 0,

fi(x(t)) = fi(xc) +∇fi(xc)
⊤(x′′

s − xc)t+ g(t) ≤ 0.

Therefore, −∇fi(xc)
⊤(x′′

s − xc) > 0, ∀i ∈ A(xc).

Due to convexity, f0(xs) ≥ f0(xc)+∇f0(xc)
⊤(xs−xc),

which leads to the fact that∇f0(xc)
⊤(xs−xc) < 0 and there

exists a constant σ < 0 such that ∇f0(xc)
⊤(x(t)−xc) = tσ.

Since f0(x(t)) ≤ f0(xc) + tσ + t2M0‖xs − xc‖2, we let

t̄ = −σ/((M0 + µ)‖xs − xc‖2) and have, for 0 < t < t̄,

f0(x(t)) + µ‖x(t)− xc‖2 < f0(xc).

To check the feasibility of x(t) with respect to Si(xk) for

i ∈ A(xc), we first notice that

Si(xk) = Brk
i
(xk)

(Ok
i (xk)),where for a strictly feasible x,

Ok
i (x) := x−∇f

ν∗

k

i (x)

2Mi

,
(

rki (x)
)2

:= −fi(x)

Mi

+
‖∇fν∗

k

i (x)‖2
4M2

i

.

Furthermore, for xc, we define

Oi(xc) := xc−
∇fi(xc)

2Mi

, (ri(xc))
2 := −fi(xc)

Mi

+
‖∇fi(xc)‖2

4M2
i

.

With ¯̄ti := argmint∈Rd ‖Oi(xc)−x(t)‖, by considering that

‖Oi(xc)− xc + xc − x(¯̄ti)‖ = ‖
∇fi(xc)

2Mi

+ ¯̄ti(xs − xc)‖

and the fact that ‖Oi(xc)− x(¯̄ti)‖ ≤ ri(xc), we know

(ri(xc))
2+‖¯̄ti(xs−xc)‖2+

¯̄ti∇fi(xc)
⊤(xs − xc)

2Mi

≤ (ri(xc))
2.

Since −∇fi(xc)(xs−xc) > 0, we have ¯̄ti > 0. Then for any

0 < t̃i ≤ min{¯̄ti, t̄, 1}, we have ‖Oi(xc) − x(t̃i)‖ < ri(xc)
and thus x(t̃i) is an interior point in Bri(xc)(Oi(xc)), ∀i ∈
A(xc). Consequently, we can find tp ≤ t̄ such that x(tp)
is an interior point in the ball Bri(xc)(Oi(xc)), ∀i ∈ A(xc),
and f0(x(tp)) < f0(xc).

We let {xkj
}j≥1 be the subsequence of {xk}k≥1 that con-

verges to xc. Since ν∗kj
converges to 0, O

kj

i (xkj
) converges to

Oi(xc) and r
kj

i (xkj
) converges to ri(xc) for any i ∈ A(xc).

Because x(tp) is an interior point of Bri(xc)(Oi(xc)), ∀i ∈
A(xc), we know that for any j0 there exists j > j0 such that

xkj
is arbitrarily close to xc and x(tp) ∈ S(xkj

). Thus, for

any k0 and τ there exists kp > k0 such that ‖xkp
− xc‖ ≤ τ

and x(tp) ∈ S(xkp
). �

D. Proof of Theorem 3

We let xc be an accumulation point of {xk}k≥1 such that

∇fi(xc) 6= 0, ∀i ∈ A(xc) (see Assumption 4). If ∇f0(xc) =



0, then with λc = 0, the pair (xc, λc) is a KKT point and thus

xc is minimizer. In the following, we assume ∇f0(xc) 6= 0.

From Lemma 2, we know

∇f0(xc) 6= 0, A(xc) 6= ∅, and ∇fi(xc) 6= 0 for i ∈ A(xc).

Then, we prove the optimality of xc by contradiction. By

assuming xc is not an optimum, we know the three points in

Lemma 3 hold. Therefore, for any τ > 0 and k0 ∈ Z≥1 there

exist kp > k0 and x′ ∈ S(xkp
) verifying ‖xkp

−xc‖ ≤ τ and

f0(x
′) + µ‖x′ − xc‖2 < f0(xc). By letting τ be sufficiently

small, we have kp and x′ ∈ S(xkp
) verifying

µ‖xc−xkp
‖2 <

1

2

(

f0(xc)− f0(x(tp))− µ‖x(tp)− xc‖2
)

,

and f0(x
′) + µ‖x′ − xc‖2 < f0(xc). Therefore, we have

f0(x
′) + µ‖x′ − xkp

‖2
≤f0(x′) + µ‖x′ − xc‖2 + µ‖xc − xkp

‖2

<
1

2
f0(xc) +

1

2

(

f0(x
′) + µ‖x(tp)− xc‖2

)

<f0(xc).

Therefore, we have

f0(xkp+1) + µ‖xkp+1 − xkp
‖2

≤f0(x′) + µ‖x′ − xkp
‖2 < f0(xc),

which contradicts the monotonicity properties shown in

Theorem 2. Now, we have shown that xc is optimum.

For any accumulation point xc, no matter whether

∇fi(xc) 6= 0, ∀i ∈ A(xc) holds, we know f0(xc) =
limk→∞ f0(xk) due to Theorem 2. Thus, any accumulation

point xc is a minimizer of (1).
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