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Abstract
This paper studies worst-case robust optimal tracking using noisy input-output data. We utilize
behavioral system theory to represent system trajectories, while avoiding explicit system identifi-
cation. We assume that the recent output data used to implicitly specify the initial condition are
noisy and we provide a non-conservative design procedure for robust control based on optimization
with a linear cost and linear matrix inequality (LMI) constraints. Our methods rely on the param-
eterization of noise sequences compatible with the data-dependent system representation and on
a suitable reformulation of the performance specification, which further enable the application of
the S-lemma to derive an LMI optimization problem. The performance of the new controller is
discussed through simulations.
Keywords: data-driven control, robust control, reference tracking, linear matrix inequalities.

1. Introduction

Due to the recent advances in pervasive sensing, communication and computation, data availability
for control design is steadily increasing. This has motivated a renewed interest in the develop-
ment of frameworks for data-driven control with performance guarantees using finite-length data
sequences (Persis and Tesi, 2020; van Waarde et al., 2020b; Matni et al., 2019; Tu, 2019). Sev-
eral recent works use raw data for representing the system dynamics, as well as conducting sys-
tem analysis and control design (Persis and Tesi, 2020; van Waarde et al., 2020b; Berberich et al.,
2020b; Bisoffi et al., 2020; van Waarde et al., 2020a; De Persis and Tesi, 2021; Coulson et al.,
2019; Berberich et al., 2020a; Coulson et al., 2020). However, most of these approaches are con-
ceived for noiseless data or noisy input-state data. Noisy input-output measurements are considered
in (Berberich et al., 2020a; Coulson et al., 2020; Kastsiukevich and Dmitruk, 2020). In Berberich
et al. (2020a), slack variables are introduced in the data-dependent system representation to ac-
count for noisy measurements. The modified control scheme is shown to be recursively feasible and
practically exponentially stable; however, the tracking performance is not analyzed. The authors
in Coulson et al. (2020) propose a distributionally robust variant of DeePC based on semi-infinite
optimization. They then formulate a finite and convex program, whose optimal value is an upper
bound to that of the original optimization problem. The work Kastsiukevich and Dmitruk (2020)
considers using noiseless historical data and noisy recent output data to minimize the energy of the
control input while robustly satisfying input/output constraints. The authors propose to separate the
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problems of estimation of the initial condition and control design, and show that the solution to the
formulated problem is computed by consecutively solving two optimization problems.

In safety-critical applications, such as power networks and industrial control systems, it is some-
times required to adopt a bounded-error perspective by enforcing robustness against all possible
noise realizations and providing worst-case performance guarantees. This is the setting considered
in the present paper and, for this purpose, we utilize the data-driven prediction method in Markovsky
and Rapisarda (2008). We assume the historical data are noiseless while recent data are corrupted
by noise terms satisfying a quadratic constraint similar to the one in van Waarde et al. (2020a). Our
goal is to provide a control design method for worst-case optimal reference tracking with explicit
performance guarantees.

We first characterize noises that are consistent with the input-output data, and then reformulate
the tracking cost. This enables us to apply the S-lemma (Pólik and Terlaky, 2007) to transform
the worst-case robust control problem to an equivalent minimization problem with a linear cost and
linear matrix inequality (LMI) constraints. In contrast to Kastsiukevich and Dmitruk (2020), we
aim to minimize a quadratic cost on both inputs and outputs, while the method in Kastsiukevich
and Dmitruk (2020) only deals with the minimization of the input energy. The main features of
our method are the following: (1) we consider the minimization of the worst-case tracking perfor-
mance; (2) the proposed method does not require system identification; (3) the proposed design
procedure is non-conservative, meaning that we obtain the optimal tracking controllers without any
approximations.

This paper is organized as follows. In Section 2, we provide preliminaries on data-driven sim-
ulation and control. The problem formulation is given in Section 3. The data-based robust optimal
tracking control problem is solved in Section 4. Simulations are provided in Section 5. Some
concluding remarks are provided in Section 6.

Notation: For a square matrix Φ, Φ > 0 (Φ ≥ 0) represents that it is positive definite (semidef-
inite). For Q ≥ 0, the norm ‖x‖Q is defined as

√
x>Qx. For a matrix A ∈ Rn×m, ker(A) and

range(A) denote its null space and column space, respectively. Moreover,N (A) ∈ Rm×dim(ker(A))

denotes a matrix whose columns form a basis for the null space of A. I and 0 denote identity and
zero matrices of suitable size. The operator ⊗ denotes the Kronecker product.

2. Preliminaries on Data-driven Prediction

We consider a controllable discrete-time LTI system G with the state space model

xk+1 = Axk +Buk, yk = Cxk +Duk, (1)

where xk, x0 ∈ Rn, uk ∈ Rm, yk ∈ Rp are the system states, initial state, inputs, and outputs,
respectively. Here we assume that (A,B,C,D) is in minimal form; thus, the pair (A,B) is control-
lable and (A,C) is observable. The lag l(G) is defined as the smallest integer l such that the l-step
observability matrix [C>, A>C>, . . . , (Al−1)>C>]> has rank n. Therefore, l(G) ≤ n. A system
can only generate certain input-output trajectories.

Definition 1 An input-output sequence {uk, yk}T−1
k=0 is a trajectory of G if and only if there exists

an initial condition x0 ∈ Rn as well as a state sequence {xk}Tk=1 such that (1) holds for k =
0, . . . , T − 1.
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As common in data-driven control, to determine system characteristics, one needs to collect a
set of input-output data {ūk, ȳk}th+Td−1

k=th
, which we call historical. Historical data can be thought

as collected long before the start (indicated by time 0) of any control or prediction, i.e., th �
0. In the remainder of this section, we will show how to use the historical data to form a data-
dependent representation of the system (Willems et al., 2005; Markovsky and Rapisarda, 2008).
Throughout the paper, the column concatenation of the vectors in a sequence {vk}jk=i is abbreviated
as v, where the starting and ending indices i, j are clear from the context. The Hankel matrix of
depth L associated with a historical sequence {v̄k}th+Td−1

k=th
is defined as

HL(v̄) :=


v̄th v̄th+1 · · · v̄th+Td−L
v̄th+1 v̄th+2 · · · v̄th+Td−L+1

...
...

. . .
...

v̄th+L−1 v̄th+L · · · v̄th+Td−1

 .
To assess if (HL(ū), HL(ȳ)) is informative for predicting system trajectories, we introduce the

concept of persistent excitation.

Definition 2 An input sequence {ūk}th+Td−1
k=th

is persistently exciting of orderL if the corresponding
Hankel matrix is full row rank, i.e., rank(HL(ū)) = mL.

The Fundamental Lemma shows how to directly use the known input-output data to characterize all
possible system trajectories.

Lemma 3 (Fundamental Lemma (Willems et al., 2005)) Suppose {ūk, ȳk}th+Td−1
k=th

is a trajec-

tory of an LTI system G and that the input sequence {ūk}th+Td−1
k=th

is persistently exciting of order

L+ n. Then, {uk, yk}L−1
k=0 is a trajectory of G if and only if there exists g ∈ RTd−L+1 such that[

HL(ū)
HL(ȳ)

]
g =

[
u
y

]
. (2)

An LTI system G has infinitely many trajectories corresponding to different initial states x0; there-
fore, Lemma 3 cannot be directly used to predict the system output {yk}Te−1

k=0 from the input se-
quence {uk}Te−1

k=0 . In order to determine the initial state and, therefore, {yk}Te−1
k=0 , one also needs to

know an initial trajectory {uk, yk}−1
k=−Tini . The column concatenations of these initial sequences are

denoted as uini and yini, respectively. {uini, yini} are measured later than the historical data {ū, ȳ};
therefore, we refer to the former as recent data.The length Tini should be no less than l(G) for x0

and thus y to be uniquely determined (Markovsky and Rapisarda, 2008). When applying Lemma 3
to characterize the system trajectory from k = −Tini to k = Te − 1, we need Hankel matrices to be
of proper sizes, i.e.

U =
[
U>p U>f

]>
, HTini+Te (ū) , Y =

[
Y >p Y >f

]>
, HTini+Te (ȳ) ,

where Up and Yp consist of the first Tini block rows of U and Y , while Uf and Yf consist of the
last Te block rows of the U and Y . The following lemma shows how to predict the system outputs
based on the Fundamental Lemma.
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Lemma 4 (Markovsky and Rapisarda (2008)) Suppose ū is persistently exciting of order Tini +
Te +n, and Tini ≥ l(G). Then for a system trajectory (uini, yini) and any Te-long input sequence u,
the following equation 

Up
Yp
Uf
Yf

 g =


uini

yini

u
y

 (3)

can be solved for g and y, where the solution y is unique.

3. Problem Formulation

Based on the above method of system simulation, with the historical data {ū, ȳ} and recent data
{uini, yini} at hand, we formulate the problem of data-driven linear-quadratic tracking over a finite
horizon as

min
u,g

Te−1∑
k=0

(
‖yk − rk‖2Q + ‖uk‖2R

)
s.t. (3), (4)

where r represents the output reference to be tracked; Q and R are positive semi-definite matrices;
u is the control input to be designed; y is the resulting output from u and also the unique solution
to (3) in view of Lemma 4.

In this paper, we are interested in the case that initial output trajectory yini is noisy, i.e., yini =
y̌ini +w, where y̌ini represents the noiseless output signal and w represents the measurement noise.
Moreover, we assume that w satisfies the quadratic constraint, first introduced in van Waarde et al.
(2020a) and Berberich et al. (2020b)[

1
w

]> [
Φ11 Φ12

Φ>12 Φ22

]
︸ ︷︷ ︸

Φ

[
1
w

]
≥ 0, where Φ22 = Φ>22 < 0. (5)

Remark 5 As shown in van Waarde et al. (2020a) and Berberich et al. (2020b), the negative
definiteness of Φ22 ensures that noise w is bounded. In the special case that Φ12 = 0 and Φ22 =
−I, (5) reduces to w>w =

∑
iw
>
i wi ≤ Φ11, which has the interpretation of bounded accumulated

energy for w.

Remark 6 We assume that the historical data {ūk, ȳk}th+Td−1
k=th

is not affected by noise, but only the
recent output measurements yini are. This assumption is realistic as in certain practical scenarios
one might have access to very accurate (and, thus, expensive) sensors to collect historical data once,
but only have relatively inaccurate and noisy sensors to collect data during real-time operations.

We are interested in designing the control input u that minimizes the worst-case quadratic track-
ing error (4) among all feasible noise trajectories w, i.e., the vectors w satisfying (5), such that
(uini, yini − w) is a trajectory of G, as per Lemma 3. The formal min-max robust optimal tracking
control problem is given as follows.
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Problem P1: Find the input sequence u solving the min-max optimization problem

min
u

max
w,g

Te−1∑
k=0

(
‖yk − rk‖2Q + ‖uk‖2R

)

s.t.,


Up
Yp
Uf
Yf

 g =


uini

yini

u
y

−

0
w
0
0

 , (6)

[
1
w

]>
Φ

[
1
w

]
≥ 0. (7)

Remark 7 In view of Lemma 4, there is a unique output y for given u and w. Therefore, even
though multiple g verifying (6) might exist, they are completely equivalent, since they yield the same
input-output trajectory. As such, in the optimization problem P1, the optimization variable g can be
omitted for notational simplicity.

In view of Lemma 3 and above min-max optimization problem, the feasible noises arew vectors
satisfying (7), such that (6) admits a solution g. In the next section, we propose a method to solve
P1.

4. Robust Controller Design

Problem P1 can be reformulated as

min
u,γ

γ

s.t., LQTE(u,w) ≤ γ ∀w satisfying (6), (7),
(8)

where the linear quadratic tracking error is defined as LQTE(u,w) ,
∑Te−1

k=0

(
‖yk − rk‖2Q + ‖uk‖2R

)
.

For notational simplicity, we have omitted the dependence of LQTE on r.
In the sequel, we will derive a tractable reformulation of (8). We first show in subsection 4.1

that any noise w satisfying (6) and (7) can be parameterized by a vector gw satisfying a quadratic
constraint. In subsection 4.2, we show that the output y is completely determined by the input u
and the vector gw, which further allows us to express the constraint LQTE(u,w) ≤ γ in (8) as a
quadratic constraint on gw. In light of these results, in subsection 4.3, we show that (8) is equivalent
to a minimization problem with a linear cost and LMI constraints.

4.1. Feasible Noise Parameterization

Since ū = {ūk}th+Td−1
k=th

is persistently exciting of order Tini+Te+n, we know that {ūk}th+Td−Te−1
k=th

is persistently exciting of order Tini + n. In view of Lemma 3, (uini, yini −w) is a trajectory of G if
and only if there exists a vector gini, such that[

Up
Yp

]
gini =

[
uini

yini − w

]
. (9)
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Therefore, a noise vector w verifies (6) if and only if it belongs to the set

W ,

{
w ∈ RpTini

∣∣∣∣[ uini

yini − w

]
∈ range

([
Up
Yp

])}
. (10)

In the following lemma, we show that the setW can be parameterized by a vector gw, and the
proof can be found in Xu et al. (2021).

Lemma 8 Let nw = dim(ker(Up)). Then, any noisew ∈ W can be expressed as an affine function
of a free vector gw ∈ Rnw as

w = −YpMgw + (−Ypg∗w + yini)︸ ︷︷ ︸
w0

, (11)

where M = N (Up) and g∗w = U>p
(
UpU

>
p

)−1
uini. Moreover, any feasible noise w satisfying (6)

and (7) can be represented as in (11) with the additional constraint[
1
gw

]> [
Φ11 + w>0 Φ>12 + Φ12w0 + w>0 Φ22w0 −Φ12YpM − w>0 Φ22YpM
−M>Y >p Φ>12 −M>Y >p Φ22w0 M>Y >p Φ22YpM

]
︸ ︷︷ ︸

Aw

[
1
gw

]
≥ 0. (12)

4.2. Transformation of the Performance Specifications

In this subsection, we show that for given feasible w, the output y can be expressed in terms of gw
and u, and that the performance specification constraint LQTE(u,w) ≤ γ can be transformed into
a quadratic constraint on gw. For given u and feasible w, we first show how to compute g in (6),
which can further be used to calculate the output y. When (uini, yini−w) is a feasible initial system
trajectory, for any input u, there exists a g verifyingUpYp

Uf

 g =

 uini

yini − w
u

 . (13)

Although g is not necessarily unique, all such g produce the same y (see Lemma 4). In the following,
we show that a candidate solution g to (13) is given by gini+gu, where gini = g∗w+Mgw is a solution
to (9) and gu is a solution to UpYp

Uf

 gu =

 0
0

u− Ufgini

 . (14)

Since [0>,0>]> is a feasible initial system trajectory, in view of Lemma 4, there always exists a gu
solving (14). For explicitly characterizing gu, we first introduce a preliminary lemma.

Lemma 9 There always exists a row permutation matrixPY decomposing Yp asPY Yp = [Y >p1 , Y
>
p2 ]>

such that Λ , [U>p , Y
>
p1 , U

>
f ]> has full row rank and rank(Λ) = rank([U>p , Y

>
p , U

>
f ]>). For such

a PY , the rows of Yp2 can be written as linear combinations of the rows of [U>p , Y
>
p1 ]>.
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Proof It is straightforward to show the existence of such a PY ; therefore, the proof of this fact is
omitted here. We apply the following row permutation to (14)

I 0 0
0 PY 0
0 0 I

UpYp
Uf

 g =


Up
Yp1
Yp2
Uf

 g =


0
0
0

u− Ufgini

 . (15)

By definition, the rows of Yp2 can be written as linear combinations of the rows of [U>p , Y
>
p1 , U

>
f ]>.

Therefore, there exists an ordered sequence of elementary row operations {Ek}ek=1 captured by the
matrix E , EeEe−1 . . . E1 such that

E
[
U>p Y >p1 Y >p2 U>f

]>
=
[
U>p Y >p1 0 U>f

]>
.

Suppose, by contradiction, that the rows of Yp2 cannot be written as linear combinations of the
rows of [U>p , Y

>
p1 ]>. Then, applying E to both sides of (15), we would obtain

Up
Yp1
0
Uf

 g =


0
0

linear combination of rows of u− Ufgini

u− Ufgini

 . (16)

For any gini, there exists a u such that (16) does not admit a solution, which contradicts the fact
that (14) is feasible.

In the next lemma, we give an explicit formula for gu solving (14).

Lemma 10 A solution to (14) is provided by

gu = Λ>(ΛΛ>)−1

 0
0

u− Ufgini

 . (17)

Proof The vector gu in (17) satisfies Λgu = [0,0, (u− Ufgini)
>]>, and, therefore,

Up
Yp1
0
Uf

 gu =


0
0
0

u− Ufgini

 . (18)

In view of the proof of Lemma 9, there exists a matrix E satisfying

E


Up
Yp1
Yp2
Uf

 =


Up
Yp1
0
Uf

 and E


0
0
0

u− Ufgini

 =


0
0
0

u− Ufgini

 . (19)
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Left-multiplying both sides of (18) by E−1, in view of (19), one obtains [U>p , Y
>
p1 , Y

>
p2 , U

>
f ]>gu =

[0,0,0, (u− Ufgini)
>]>. From (15), we conclude the proof by showing that

UpYp
Uf

 gu =

I 0 0

0 P−1
Y 0

0 0 I




Up[
Yp1
Yp2

]
Uf

 gu =

I 0 0

0 P−1
Y 0

0 0 I




0[
0
0

]
u− Ufgini

 =


0[
0
0

]
u− Ufgini

 .

Given an explicit solution for gu and, therefore, a solution g for (13), we next derive the ex-
pression of y and characterize the performance specification LQTE(u,w) ≤ γ in terms of gw. The
proof can be found in Xu et al. (2021).

Lemma 11 Consider the matrix Λ defined in Lemma 9. Given a feasible noise w ∈ W and a
control sequence u, the unique output y satisfying (6) is given by

y = Buu+Bwgw + y0, (20)

where y0 = Binig
∗
w, Bw = BiniM ,

Bini = Yf

I + Λ>(ΛΛ>)−1

 0
0
−Uf

 , Bu = YfΛ>(ΛΛ>)−1

00
I

 .
Moreover, the performance specification LQTE(u,w) ≤ γ can be equivalently expressed as[

1
gw

]> [
γ − u>R̄u− (Buu+ y0 − r)>Q̄(Buu+ y0 − r) −(Buu+ y0 − r)>Q̄Bw

−B>w Q̄(Buu+ y0 − r) −B>w Q̄Bw

]
︸ ︷︷ ︸

Qg(u,γ)

[
1
gw

]
≥ 0,

(21)

where R̄ = I⊗R, Q̄ = I⊗Q and Λ is defined in Lemma 9.

4.3. Main Result

The following theorem leverages the results obtained in Lemmas 8 and 11 to show that the mini-
mization problem (8), and hence P1, are equivalent to a minimization problem with a linear cost
and LMI constraints.

Theorem 12 The robust control problem P1 is equivalent to solving

min
u,γ,α≥0

γ (22)

s.t.,

(R̄+B>u Q̄Bu)
−1 [

u 0
][

u>

0

]
Qag(u, γ)− αAw

 ≥ 0, (23)

8
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where

Qag(u, γ) =[
γ − (Buu)>Q̄(y0 − r)− (y0 − r)>Q̄(Buu)− (y0 − r)>Q̄(y0 − r) −(Buu+ y0 − r)>Q̄Bw

−B>w Q̄(Buu+ y0 − r) −B>w Q̄Bw

]
.

Proof Based on the feasible noise parameterization and performance specification transformations,
the minimization problem (8) is equivalent to

min
u,γ

γ s.t., (21) holds ∀gw satisfying (12).

In view of the S-lemma (Pólik and Terlaky, 2007), the constraint of this minimization problem
holds if and only if there exist u and α ≥ 0 such that Qg(u, γ) − αAw ≥ 0. Using Schur com-
plement (Boyd et al., 1994), the above matrix inequality can be transformed to the LMI in (23).
Minimizing the performance index γ further gives the solution of (8) and hence P1.

Remark 13 The results presented in Theorem 12 are non-conservative, i.e., the minimization prob-
lem (22), (23) is equivalent to the min-max optimization problem in P1. Therefore, there exists a
feasible noise vector w such that LQTE(u,w) = γ∗, where γ∗ is the minimizer of (22), (23).

Remark 14 The proposed control design can easily be applied in a receding horizon fashion, in
order to implement a data-driven predictive controller. In doing so, at each time t, one needs to
update the output reference r, as well as recent input and output data uini and yini with the online
data, solve (22), (23), and apply only the first control input from the computed optimal control
sequence u∗. Moreover, it can be shown that the resulting controller is equivalent to a robust model
predictive controller (MPC) with bounded uncertainty on the initial state. As such, the stability of
the resulting closed-loop system can be studied using the existing results on robust MPC.

5. Simulations

We consider the control of an unstable LTI system in the form of (1) with the randomly selected
matrices

A =

 0.8768 0.4147 0.0678
0.3934 −0.6436 −0.2961
−0.7907 0.7055 0.1587

 B =

 0.9567
0.1039
−0.2155

 C =

 0.4164
−0.7185
−0.9618

> D = 0.

By solving (22)-(23), we aim to calculate the optimal inputs u∗ and the resulting worst-case cost
γ∗ to regulate the system to zero outputs. We justify the non-conservativeness of our algorithm
by showing, through multiple noise realizations, that γ∗ is not an overestimate of the actual linear-
quadratic tracking errors.

With a random initial state, historical input-output data of length Td = 100 are collected from
this system with inputs sampled from a uniform distribution in the interval [−1, 1]. We assume
the exact order n = 3 to be unknown and let Tini = 4. Prior to the optimal control horizon, we
measure the recent data {uini, yini} of length Tini where the inputs are generated in the same way as
those in historical data. Moreover, this recent data is corrupted by a noise trajectory w verifying the
quadratic constraint (5) with Φ11 = Tinipε, Φ12 = 0, Φ22 = −I, and ε = 0.001.
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Figure 1: Closed-loop output trajectories for dif-
ferent noise realizations
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Figure 2: Costs for different noise realiza-
tions compared with γ∗ (red line)

In P1, we select Te = 20 and r = 0 to robustly regulate the output of the system to zero within
a horizon of length 20. The LMI minimization problem (22) is solved using Yalmip (Löfberg, 2004)
and MOSEK (MOSEK ApS, 2020). The optimal control sequence u∗ is tested with multiple com-
patible realizations of noise trajectories. In particular, we randomly select 100 gw vectors verifying
the quadratic constraint (12). These realizations parameterize 100 feasible trajectories of w, each
verifying the quadratic constraint in (5). As shown in Figure 1, output trajectories quickly converge
to a neighborhood of zero for all selected noise realizations.

As seen in Figure 2, the costs γ = y>Qy + u∗>Ru∗ of all the noise realizations (show in blue
circles) are below the solution γ∗ to (22) (shown in red line). Besides, one can spot a cost realization
close to γ∗, which indicates that γ∗ is not a conservative estimate.

6. Conclusion

In this paper, we build on data-dependent behavioral representations of linear systems to consider
the case that the recent output data are noisy and solve the data driven robust optimal tracking
control problem. However, the proposed method assumes that in the data-dependent representation
only recent data is noisy. Future work will be devoted to studying the impact of noise in the historical
data.
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