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Abstract— Recent work in data-driven control has revived
behavioral theory to perform a variety of complex control tasks,
by directly plugging libraries of past input-output trajectories
into optimal control problems. Despite recent advances, a key
aspect remains unclear: how and to what extent do noise-
corrupted data impact control performance? In this work, we
provide a quantitative answer to this question based on the
model-mismatch level incurred during a preliminary system
identification phase. We formulate a Behavioral version of
the Input-Output Parametrization (BIOP) for the optimal
predictive control of unknown systems using output-feedback
dynamic control policies. The main advantages of the proposed
framework are that 1) the state-space parameters and the initial
state need not be specified for controller synthesis, 2) it can
be used in combination with state-of-the-art impulse response
estimators, and 3) it allows to recover suboptimality results
on learning the Linear Quadratic Gaussian (LQG) controller,
therefore revealing how the model-mismatch level may affect
the performance. Specifically, it is shown that the performance
degrades linearly with the model-mismatch incurred by either
classical or behavioral-based system identification.

I. INTRODUCTION

Several safety-critical engineering systems that play a
crucial role in our modern society are becoming too complex
to be accurately modeled through white-box models [1]. As
a consequence, most modern control perspectives envision
unknown black-box systems for which an optimal behavior
must be attained by solely relying on a collection of system’s
output trajectories in response to different inputs recorded
offline.

Widely speaking, we can design optimal controllers from
data according to two paradigms. The first category contains
model-based methods, where historical input-output trajecto-
ries are exploited to approximate the system parameters, and
a suitable controller is computed for this estimated model.
The second category contains model-free methods, where one
aims to learn the best control policy directly by observing
historical trajectories, without explicitly reconstructing an
internal representation of the dynamical system. Both ap-
proaches possess their own potential and limitations; among
numerous recent surveys, we refer to [2].

Given the intricacy of establishing rigorous suboptimality
and sample-complexity bounds, most recent model-based
and model-free approaches have focused on basic Linear
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Quadratic Regulator (LQR) and Linear Quadratic Gaussian
(LQG) control problems as suitable benchmarks to establish
how machine learning can be interfaced to the continuous
action spaces typical of control [3]–[6].

A promising data-driven approach that aims at bypassing
a parametric description of the system dynamics, while still
being conceptually simple to implement for the users, hinges
on the behavioral framework [7]. This approach has gained
renewed interest with the data-driven methods of [8], which
established that constrained output reference tracking can
be effectively tackled in a Model-Predictive-Control (MPC)
fashion by plugging adequately generated historical data
into a convex optimization problem. In parallel, [9] intro-
duced data-driven formulations for some controller design
tasks. These works inspired several extensions including
closed-loop control with stability guarantees [10], maximum-
likelihood identification for control [11], [12], and nonlinear
variants [13].

In practice, however, historical data are corrupted by noise
and the quality and coherency of the achieved solutions may
be compromised. While several approaches have recently
been proposed, e.g. [12], [14], a complete quantitative anal-
ysis for the noisy case is still unavailable. Recently, [15]
has derived suboptimality and sample-complexity bounds
through a data-driven formulation of the System Level
Synthesis (SLS) approach. However, a limiting assumption
in [15] is that the internal system states can be measured
directly, which is infeasible for several large-scale systems
[16].

Our main contribution is to propose a behavioral optimal
control framework for partially observed systems. Specifi-
cally, we leverage recent Input-Output Parametrization (IOP)
tools [17] for optimal output-feedback controller design
and set up a data-driven formulation built upon behavioral
theory; we denote the resulting framework as Behavioral IOP
(BIOP). The advantages of the proposed BIOP are threefold.
First, it solely relies on libraries of past input-output trajecto-
ries, therefore enabling optimal controller synthesis without
specifying the system’s state-space parameters and the value
of the state at the initial time. Second, the system impulse
response is replaced by a suitable linear combination of his-
torical noisy input-output trajectories, which may encompass,
for instance, standard least-squares solutions [18], and the
recently proposed signal matrix models (SMM) [11], [12].
Third, our framework allows one to quantify the incurred
suboptimality as a function of the model-mismatch level
arising from a preliminary identification phase based on
noisy data. This is achieved by first establishing a tractable
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method to synthesize robust BIOP controllers and then
adapting recent results from [5]. As a further contribution,
we include the effect of a non-zero noisy initial condition in
the analysis.

We formulate the standard LQG control problem in Sec-
tion II and we present its model-based solution based on the
IOP [17] in Section III; this form enables the analysis later.
Section IV derives the BIOP, a data-driven version of the
IOP valid when the data are noiseless. Section V establishes
a tractable robust version of the BIOP which can be used
when the data are noisy. Section VI formally quantifies the
suboptimality incurred by the solution of the robust BIOP.
We conclude the paper in Section VII. The accompanying
Arxiv report [19] provides proofs in the appendices, as well
as numerical experiments and a few additional remarks.

A. Notation

We use R and N to denote real numbers and non-negative
integers, respectively. We use In to denote the identity matrix
of size n × n and 0m×n to denote the zero matrix of size
m × n. We write M = blkdg(M1, . . . ,MN ) to denote a
block-diagonal matrix with M1, . . . ,MN ∈ Rm×n on its
diagonal block entries, and for M =

[
MT

1 · · · MT
N

]T
we define the block-Toeplitz matrix

Toepm×n (M)=


M1 0m×n · · · 0m×n

M2 M1 · · · 0m×n

...
...

. . .
...

MN MN−1 · · · M1

 .
More concisely, we will write Toep(·) when the dimensions
of the blocks are clear from the context. The Kronecker
product between M ∈ Rm×n and P ∈ Rp×q is denoted
as M ⊗P ∈ Rmp×nq . Given K ∈ Rm×n, vec(K) ∈ Rmn is
a column vector that stacks the columns of K. The Euclidean
norm of a vector v ∈ Rn is denoted by ‖v‖22 = vTv
and the induced two-norm of a matrix M ∈ Rm×n is
defined as sup‖x‖2=1 ‖Mx‖2. The Frobenius norm of a
matrix M ∈ Rm×n is denoted by ‖M‖F =

√
Trace(MTM).

For a symmetric matrix M , we write M � 0 (resp. M � 0) if
and only if it is positive definite (resp. positive semidefinite).
We say that x ∼ N (µ,Σ) if the random variable x ∈ Rn
is distributed according to a normal distribution with mean
µ ∈ Rn and covariance matrix Σ � 0 with Σ ∈ Rn×n.

A finite-horizon trajectory of length T is a sequence
ω(0), ω(1), · · · , ω(T − 1) with ω(t) ∈ Rn for every t =
0, 1, . . . , T − 1, which can be compactly written as

ω[0,T−1] =
[
ωT(0) ωT(1) . . . ωT(T − 1)

]T ∈ RnT .

When the value of T is clear from the context, we will
omit the subscript [0, T − 1]. For a finite-horizon trajectory
ω[0,T−1] we also define the Hankel matrix of depth L as

HL(ω[0,T−1]) =


ω(0) ω(1) · · · ω(T − L)
ω(1) ω(2) · · · ω(T − L+ 1)

...
...

. . .
...

ω(L− 1) ω(L) · · · ω(T − 1)

 .
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Fig. 1: Interconnection of the plant G and the controller
K, where z−1 denotes the standard time-shift operator.

II. PROBLEM STATEMENT

We consider a linear system with output observations,
whose state-space representation is given by

x(t+ 1) = Ax(t) +Bu(t), y(t) = Cx(t) + v(t) , (1)

where x(t) ∈ Rn is the state of the system and x(0) = x0
for a predefined x0 ∈ Rn, u(t) ∈ Rm is the control input,
y(t) ∈ Rp is the observed output, and v(t) ∈ Rp denotes
Gaussian measurement noise v(t) ∼ N (0,Σv), with Σv � 0.
The system is controlled through a time-varying, dynamic
linear control policy of the form

u(t) =

t∑
k=0

Kt,ky(k) + w(t) , (2)

where w(t) ∈ Rm denotes Gaussian noise on the input
w(t) ∼ N (0,Σw) with Σw � 0. Similar to standard
LQG, our control goal is to synthesize a feedback control
policy that minimizes the expected value with respect to
the disturbances of a quadratic objective defined over future
input-output trajectories for a horizon N ∈ N:

J2 := Ew,v

[
N−1∑
t=0

(
y(t)TLty(t) + u(t)TRtu(t)

)]
, (3)

where Lt � 0, Rt � 0 for every t = 0, · · · , N − 1. We
note that, with Gaussian noise, dynamic linear policies are
optimal for the cost defined in (3).

III. STRONGLY CONVEX DESIGN THROUGH THE IOP

By leveraging tools offered by the framework of the
IOP [17], we formulate a strongly convex program that
computes the optimal feedback control policy by finding
the optimal input-output closed-loop responses. The state-
space equations (1) provide the following relations between
trajectories

x[0,N−1] = PA(:, 0)x(0) + PBu[0,N−1] , (4)
y[0,N−1] = Cx[0,N−1] + v[0,N−1] , (5)

where PA(:, 0) denotes the first block-column of PA and

PA = (I − ZA)−1 , PB = (I − ZA)−1ZB ,

where A = IN⊗A, B = IN⊗B, C = IN⊗C and Z is the
operator shifting all matrix blocks down by one position. We
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note that CPB is a Toeplitz matrix with blocks in the form
CAiB. From now on, we equivalently denote G = CPB

to highlight that G is a block-Toeplitz matrix containing the
first N components of the impulse response of the plant
G(z) = C(zI − A)−1B reported in Figure 1. Second,
with similar reasoning, the matrix CPA(:, 0) contains the
observability terms CAi for i = 0, . . . , N − 1. The control
policy can be rewritten as:

u[0,N−1] = Ky[0,N−1] + w[0,N−1] , (6)

where K has a causal sparsity pattern:

K =


K0,0 0m×p · · · 0m×p

K1,0 K1,1

. . . 0m×p

...
...

. . .
...

KN−1,0 KN−1,1 · · · KN−1,N−1

 . (7)

The input (6) can be thought of as a dynamic controller
in convolutional form with initial state x0. By plugging the
controller (6) into (4)-(5), it is easy to derive the relationships[

y
u

]
=

[
Φyy Φyu

Φuy Φuu

] [
v + CPA(:, 0)x(0)

w

]
, (8)

where[
Φyy Φyu

Φuy Φuu

]
=

[
(I −GK)−1 (I −GK)−1G

K(I −GK)−1 (I −KG)−1

]
. (9)

The parameters (Φyy,Φyu,Φuy,Φuu) represent the four
closed-loop responses defining the relationship between dis-
turbances and input-output signals. The main concept behind
the IOP in [17] is that linear output-feedback control policies
K can be expressed in terms of corresponding closed-loop
responses that lie in an affine subspace, hence enabling a
convex formulation of the objective J(G,K) given in (3)
as a function of the closed-loop responses. The IOP serves
well our purposes in a data-driven output-feedback setup, as
it offers a controller parametrization that is directly defined
through the impulse response parameters G, without re-
quiring a state-space representation. We adapt the following
result from [17] to the finite horizon case. A proof is reported
in the Appendix of [19].

Proposition 1: Consider the LTI system (1) evolving un-
der the control policy (6) within a finite horizon of length
N ∈ N. Then:

1) For any controller K there exist four matrices
(Φyy,Φyu,Φuy,Φuu) such that K = ΦuyΦ

−1
yy and

IOP(Φ,G) = 0 ,

where we define IOP(Φ,G) = 0 as[
I −G

] [Φyy Φyu

Φuy Φuu

]
=
[
I 0

]
, (10)[

Φyy Φyu

Φuy Φuu

] [
−G
I

]
=

[
0
I

]
, (11)

Φyy,Φuy,Φyu,Φuu have causal sparsities 1. (12)

2) For any four matrices (Φyy,Φyu,Φuy,Φuu) lying in
the affine subspace (10)-(12), the controller K =
ΦuyΦ

−1
yy is causal as per (7) and yields the closed-

loop responses (Φyy,Φyu,Φuy,Φuu).
We are now ready to establish a strongly convex formula-

tion of the optimal control problem under study. Please refer
to the Appendix of [19] for a complete proof.

Proposition 2: Consider the LTI system (1). The con-
troller in the form (6) achieving the minimum of the cost
functional (3) is given by K = ΦuyΦ

−1
yy , where Φuy,Φyy

are optimal solutions to the following strongly convex pro-
gram:

min
Φ

∥∥∥∥∥
[
L

1
2 0

0 R
1
2

][
Φyy Φyu

Φuy Φuu

][
Σ

1
2
v 0 yx(0)

0 Σ
1
2
w 0

]∥∥∥∥∥
2

F

(13)

subject to (10)− (12) ,

where yx(0) = CPA(:, 0)x(0), L =
blkdiag(L0, · · · , LN−1), R = blkdiag(R0, · · · , RN−1),
Σv = IN ⊗ Σv and Σw = IN ⊗ Σw.

When the system parameters (A,B,C, x0) are known, it is
straightforward and efficient to compute the unique globally
optimal solution (Φ?

yy,Φ
?
yu,Φ

?
uy,Φ

?
uu) of problem (13) with

off-the-shelf interior point solvers. The globally optimal
control policy is recovered as K? = Φ?

uy(Φ?
yy)−1. We

also remark that, since the noise is Gaussian, the linear
policy u = π?(y) = K?y is optimal with respect to all
feedback policies. If the noise is non-Gaussian, K? remains
the optimal linear controller, but nonlinear policies may
outperform it.

However, it is more challenging to compute K? merely
relying on libraries of past input-output trajectories. In the
next section, we exploit behavioral theory to provide a non-
parametric data-driven version of (13).

IV. BEHAVIORAL INPUT-OUTPUT PARAMETRIZATION

Before moving on, we recall the following definition
of persistency of excitation and the result known as the
Fundamental Lemma for LTI systems [20].

Definition 1: We say that uh[0,T−1] is persistently exciting
(PE) of order L if the Hankel matrix HL(uh[0,T−1]) has full
row-rank.
A necessary condition for the matrix HL(uh[0,T−1]) to be full
row-rank is that it has at least as many columns as rows. It
follows that the trajectory uh[0,T−1] must be long enough to
satisfy T ≥ (m+ 1)L− 1.

Lemma 1 (Theorem 1, [20]): Consider system (1) and as-
sume that (A,B) is controllable and that there is no noise.
Let {yh[0,T−1],u

h
[0,T−1]} be a historical system trajectory of

length T . Then, if u[0,T−1] is PE of order n+L, the signals
y?[0,L−1] ∈ RpL and u?[0,L−1] ∈ RmL are valid trajectories of

1Specifically, they have the block lower-triangular sparsities resulting by
construction from the expressions (9), the sparsity of K in (7) and that of
G.
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(1) if and only if there exists g ∈ RT−L+1 such that[
HL(yh[0,T−1])

HL(uh[0,T−1])

]
g =

[
y?[0,L−1]
u?[0,L−1]

]
. (14)

Next, we show how Lemma 1 can be directly exploited to
obtain a non-parametric formulation of (13). We work under
the following assumptions.

Assumption 1: The data-generating LTI system (1) is such
that (A,B) is controllable and (A,C) is observable.

Assumption 2: The following data are available:
i) a recent system trajectory of length Tini:{

yr[0,Tini−1],u
r
[0,Tini−1]

}
, with yr[0,Tini−1] =

y[−Tini,−1] and ur[0,Tini−1] = u[−Tini,−1],
ii) a historical system trajectory of length

T :
{

yh[0,T−1],u
h
[0,T−1]

}
, with yh[0,T−1] =

y[−Th,−Th+T−1] and uh[0,T−1] = u[−Th,−Th+T−1] for
Th ∈ N such that Th > T + Tini.

Assumption 3: The historical and recent data are not cor-
rupted by noise.

We will drop Assumption 3 in Section V.
Assumption 4: The historical input trajectory uh[0,T−1] is

persistently exciting of order n+ Tini +N , where Tini ≥ l
and l is the smallest integer such that[

CT (CA)T · · · (CAl−1)T
]T

,

has full row-rank. Note that if Assumption 1 holds, then
l ≤ n.

A few comments are in order. First, in Assumption 2
the historical data are needed to construct a non-parametric
system representation, and the recent data are exploited to
define a cost function that accurately reflects the system
initial state x(0) ∈ Rn. Second, in Assumption 3 we assume
that the observed data are noiseless to construct a data-driven
optimal control problem that is equivalent to (13). We will
deal with the noisy case in Section V.

Theorem 1 (Behavioral IOP): Consider the unknown LTI
system (1) and let Assumptions 1-4 hold. Let (G, g) be any
solutions to the linear system of equationsUpYp

Uf

[G g
]
=

 0mTini×m ur[0,Tini−1]
0pTini×m yr[0,Tini−1][

Im 0m×m(N−1)
]T

0mN×1

, (15)

where
[
Up
Uf

]
= HTini+N (uh[0,T−1]) and

[
Yp
Yf

]
=

HTini+N (yh[0,T−1]). Then, the optimization problem (13) is
equivalent to

min
Φ

∥∥∥∥∥
[
L

1
2 0

0 R
1
2

] [
Φyy Φyu

Φuy Φuu

][
Σ

1
2
v 0 Yfg

0 Σ
1
2
w 0

]∥∥∥∥∥
2

F
(16)

subject to IOP(Φ,Toep(YfG)) .
Proof: In problem (13), the system parameters

(A,B,C, x(0)) appear through the terms G = CPB in the
constraints and CPAx(0) in the cost. It is therefore sufficient

to show that we are able to substitute both elements with data
as per the theorem statement.

Let G be any solution (15). By rearranging the terms,
each column of G can be thought as a solution to (14)
associated with a zero initial condition and a unitary input
ei ∈ Rm. Since the hypotheses of Lemma 1 are satisfied for
L = Tini +N , similar to Proposition 11 of [21] we deduce
that YfG is the first block-column of the system impulse
response matrix, independent of the solution G. Therefore,
we can equivalently substitute G = Toepp×m(YfG) in the
constraints (10)-(11) of problem (13). Finally, note that Yfg
corresponds to the trajectory starting at x(0) (as implicitly
defined by the recent trajectory y[−Tini,−1] and u[−Tini,−1])
when applying a zero input [21]. Therefore, it corresponds
to the true free response starting from x(0).

For any solution G of the behavioral impulse response
representation (15), the affine constraints (10)-(12) describe
all the achievable closed-loop responses for the unknown
model and the corresponding controller K. Also, for any
solution g of (15), the term Yfg represents the true free
response of the system. As a result, the achieved optimal
controller K? and optimal cost J? are independent of the
chosen solution (G, g) for (15). We have thus characterized
a data-driven version of the IOP, based on a preliminary
impulse response identification phase enabled by behavioral
theory. Theorem 1 further shows that, by exploiting the BIOP,
it is straightforward to cast the LQG problem as a strongly
convex program.

V. ROBUST BIOP WITH NOISE-CORRUPTED DATA

The linear system (15) is highly underdetermined when
the historical trajectory is very long and noiseless. In par-
ticular, any solution (G, g) to (15) gives an exact impulse
response matrix and free trajectory of the system. In practice,
however, the historical and recent data are corrupted by
noise. According to the system equations (1)-(2), we can
assume historical and recent trajectories are affected by noise
wh(t), wr(t), vh(t), vr(t) at all time instants, with expected
values µhw, µ

r
w, µ

h
v , µ

r
v and variances Σh

w,Σ
r
w,Σ

h
v ,Σ

r
v re-

spectively. Hence, the matrix on the left-hand-side of (15)
becomes full row-rank almost surely and (15) do not recover
the free and impulse responses. This issue is well-known
in the behavioral theory literature, and several promising
solutions have recently been proposed [8], [9], [12], [14].
We briefly review some of them in the accompanying Arxiv
report [19].

Independent of the chosen estimator, we will have that

E[Ĝ] = MG, Var(vec(Ĝ)) = ΣG ,

E[ŷfree] = µy, Var(ŷfree) = Σy ,

where MG = G and µy = yfree if and only if the
estimators are unbiased, and where ΣG,Σy are “small” in an
appropriate sense. We work under the assumption that, with
high-probability, the errors

∥∥∥G− Ĝ
∥∥∥ and ‖yfree − ŷfree‖ are

small; the better the predictor (i.e., smaller bias and vari-
ance), the smaller the errors. Motivated as above, we abstract
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from the particular identification scheme and formalize the
following assumption.

Assumption 5: There exist εG > 0 and ε0 > 0 such that,
for any sequence of noisy historical and recent data, with
high probability∥∥∥G− Ĝ

∥∥∥
2

= ‖∆‖2 ≤ εG, ‖yfree − ŷfree‖2 = ‖δ0‖2 ≤ ε0 .

We denote ε = max(εG, ε0).
After condensing the effect of noise into a single error

parameter ε > 0, we are ready to leverage and adapt the
analysis technique recently suggested in [5] for infinite-
horizon LQG, which follows the philosophy first introduced
in [3] for LQR. This allows to quantify the performance
degradation with respect to model-based LQG that one incurs
when using behavioral models to estimate the system impulse
response from noisy data. The first step is to construct a
robust version of (16) that is defined in terms of the available
noisy historical data. The proof of Proposition 3 is reported
in the Appendix of [19]. For simplicity, but without loss
of generality, we assume that L,R,Σw,Σv are identity
matrices with appropriate dimensions.

Proposition 3: Assume that historical and recent data are
corrupted by noise. Let Ĝ, ŷfree be estimators of G,yfree,
respectively, such that Assumption 5 holds with ε > 0. Let
J(G,K) =

√
Ew,v [yTy + uTu] denote the square root of

the cost in (3). Consider the following model-based worst-
case robust optimal control problem:

min
K

max
‖∆‖2≤ε, ‖δ0‖2≤ε

√
Ew,v [yTy + uTu] (17)

subject to (4), (5), (6), (7) .

Then, problem (17) is equivalent to

min
Φ̂

max
‖∆‖2 ≤ ε
‖δ0‖2 ≤ ε

∥∥∥∥∥
[
Φ̂yy(I-∆Φ̂uy)-1 Φ̂yy(I-∆Φ̂uy)-1(Ĝ+∆)

Φ̂uy(I-∆Φ̂uy)-1 (I-Φ̂uy∆)-1Φ̂uu

]
×

×

[
I 0 ŷfree + δ0
0 I 0

]∥∥∥∥∥
F

(18)

subject to IOP(Φ̂, Ĝ) . (19)
The robust optimization problem in Proposition 3 is highly
non-convex. We therefore proceed with deriving a quasi-
convex upper-bound to J(G,K) to be used for controller
synthesis and suboptimality analysis.

A. A tractable robust BIOP formulation
The following lemma serves as the basis to derive a

tractable formulation of (18). Its rather lengthy technical
proof is reported in the Appendix of [19].

Lemma 2: Let ε = max(εG, ε0) and assume ε
∥∥∥Φ̂uy

∥∥∥
2
<

1. Further assume that
∥∥∥Φ̂uy

∥∥∥
2
≤ α for α > 0. Then, we

have

J(G,K) ≤ 1

1− ε
∥∥∥Φ̂uy

∥∥∥
2

× (20)

×

∥∥∥∥∥
[√

1+h(ε, α, Ĝ)+h(ε, α, ŷfree)Φ̂yy Φ̂yu Φ̂yyŷfree√
1 + h(ε, α, ŷfree)Φ̂uy Φ̂uu Φ̂uyŷfree

]∥∥∥∥∥
F

,

where h(ε, α,Y) = ε2(2+α‖Y‖2)2+2ε ‖Y‖2 (2+α ‖Y‖2).
Exploiting the reformulation idea first introduced in [22]

and utilized for analysis in [5], we are now ready to establish
a quasi-convex reformulation of problem (18).

Theorem 2: Given estimation errors εG, ε0 with ε =
max(εG, ε0), and for any α > 0, the minimal cost of problem
(17) is upper bounded by the minimal cost of the following
quasi-convex program:

min
γ∈[0,ε−1)

1

1− εγ
min
Φ̂

Jinner (21)

subject to IOP(Φ̂, Ĝ),
∥∥∥Φ̂uy

∥∥∥
2
≤ min(γ, α) .

where Jinner is equal to∥∥∥∥∥
[√

1+h(ε, α, Ĝ)+h(ε, α, ŷfree)Φ̂yy Φ̂yu Φ̂yyŷfree√
1 + h(ε, α, ŷfree)Φ̂uy Φ̂uu Φ̂uyŷfree

]∥∥∥∥∥
F

.

Proof: Directly follows from Lemma 2 and [5, Theo-
rem 3.2].

First, notice that the inner minimization problem in (21)
is strongly convex for a fixed γ, and that the outer function
(1−εγ)−1 is monotonically increasing in γ. Hence, it is well-
known that the overall program can be efficiently solved by
golden search on γ and solving the corresponding instances
of the inner program. Second, we explicitly take into account
the effect of an unknown and noisy initial state x(0) ∈ Rn
through the parameter ŷfree. Assuming x(0) = 0 as per
[15] may not be realistic for practical purposes, as the user
initially lets the system free to evolve in order to harvest data.
Furthermore, the following analysis will show that, for finite-
horizon control problems, the suboptimality strongly depends
on x(0) ∈ Rn as a function of ‖yfree‖22. Last, we note that
the constraint on ‖Φ̂uy‖2 is the main source of suboptimality
with respect to the true LQG problem (13); as pointed out
in [3], [5], [15], this additional constraint enforces stronger
disturbance rejection properties, for which we have to pay
in terms of performance. We are now ready to quantify the
suboptimality of (21) with respect to (13).

VI. SUBOPTIMALITY ANALYSIS

In this section, we denote as K?,Φ? the optimal controller
and corresponding closed-loop responses for the real prob-
lem (13). We denote as K̂?, Φ̂? the optimal controller and
corresponding closed-loop responses for the quasi-convex
program (21) and let J? = J(G,K?) and Ĵ = J(G, K̂?).

Next, inspired by the analysis in [5], we show that if ε is
small enough it holds

Ĵ2 − J?2

J?2
= O (ε) .

In other words, for a small estimation error ε on the impulse
response, applying controller K̂? (which is solely computed
with noisy data) to the real plant achieves almost optimal
closed-loop performance. We start with a lemma that an-
alytically characterizes a feasible solution to problem (21),
whose suboptimality is exploited in further characterizing the
suboptimality bound. The proofs of Lemma 3 and Theorem 3
are reported in the Appendix of [19].
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Lemma 3 (Feasible solution): Let η = ε
∥∥Φ?

uy

∥∥
2
, and

select α ≥
√

2 η
ε(1−η) . Then, if η < 1

5 , the following
expressions

Φ̃yy = Φ?
yy(I+∆Φ?

uy)−1, Φ̃yu = Φ?
yy(I+∆Φ?

uy)−1(G−∆),

Φ̃uy = Φ?
uy(I + ∆Φ?

uy)−1, Φ̃uu = (I + Φ?
uy∆)−1Φ?

uu,

γ̃ =

√
2η

ε(1− η)
, (22)

provide a feasible solution to problem (21).
Theorem 3: Suppose that 5

√
2

4

∥∥Φ?
uy

∥∥
2
≤ α ≤ 5

∥∥Φ?
uy

∥∥
2

and that ε < 1

5‖Φ?
uy‖2

. Then, when applying the optimal

solution K̂? of (21) to the true plant G, the relative error
with respect to the true optimal cost is upper bounded as

Ĵ2 − J?2

J?2
≤ 20ε

∥∥Φ?
uy

∥∥
2

+ 4(M + V )

= O
(
ε
∥∥Φ?

uy

∥∥
2

(‖G‖22 + ‖yfree‖22)
)
,

where

M = h(ε, α, Ĝ) + h(ε, α, ŷfree) + h(ε,
∥∥Φ?

uy

∥∥
2
,G)

+ h(ε,
∥∥Φ?

uy

∥∥
2
,yfree) ,

V = h(ε, α, ŷfree) + h(ε,
∥∥Φ?

uy

∥∥
2
,yfree) ,

and h(a, b,Y) = a2(2 + b‖Y‖2)2 + 2a ‖Y‖2 (2 + b ‖Y‖2).
Theorem 3 shows that the relative performance of the

robust BIOP formulation (21) with respect to its exact non-
noisy version (16) decreases linearly with ε, as long as ε
is small enough to guarantee ε

∥∥Φ?
uy

∥∥
2
< 1

5 . The bound
also grows quadratically with the norm of the true impulse
and free responses, which implies that an unstable system
will be difficult to control for a long horizon. Note that it
is appropriate to choose α not too large, and specifically
α ≤ 5 ‖Φuy‖2 < ε−1 in order for the scaling of h(ε, α, Ĝ) in
terms of ε not to dominate over h(ε,

∥∥Φ?
uy

∥∥
2
,G). Our rate in

terms of ε matches that of [3], [5], which are valid in infinite-
horizon. In spite of the additional challenges of considering
a noisy unknown initial state x(0) ∈ Rn and noisy output-
feedback, our rate also matches the one achieved with the
approach of [15] valid for x(0) = 0 and state-feedback.

VII. CONCLUSIONS

We have proposed the BIOP, a method for the design of
optimal output-feedback controllers which directly embeds
historical input-output trajectories in its formulation. When
these historical data are noiseless, the BIOP is equivalent to
the standard IOP and recovers an optimal LQG controller.
In the presence of noise-corrupted data, we propose a robust
version of the BIOP that explicitly incorporates the estimated
uncertainty level and that can be solved efficiently through
convex programming. By exploiting recently developed anal-
ysis techniques, the suboptimality of the obtained solution is
quantified and compared with the nominal LQG solution.
Furthermore, the developed framework is readily compatible
with state-of-the-art behavioral estimation and prediction
techniques, e.g. [12], [14].
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