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Actuator Placement Under Structural
Controllability Using Forward and Reverse

Greedy Algorithms
Baiwei Guo , Orcun Karaca , Tyler Summers , and Maryam Kamgarpour

Abstract—Actuator placement is an active field of re-
search, which has received significant attention for its ap-
plications in complex dynamical networks. In this article,
we study the problem of finding a set of actuator place-
ments minimizing the metric that measures the average
energy consumed for state transfer by the controller, while
satisfying a structural controllability requirement and a car-
dinality constraint on the number of actuators allowed. As
no computationally efficient methods are known to solve
such combinatorial set function optimization problems, two
greedy algorithms, forward and reverse, are proposed to
obtain approximate solutions. We first show that the con-
straint sets these algorithms explore can be characterized
by matroids. We then obtain performance guarantees for
the forward and reverse greedy algorithms applied to the
general class of matroid optimization problems by exploit-
ing properties of the objective function such as the sub-
modularity ratio and the curvature. Finally, we propose fea-
sibility check methods for both algorithms based on maxi-
mum flow problems on certain auxiliary graphs originating
from the network graph. Our results are verified with case
studies over large networks.

Index Terms—Actuator placement, dynamical networks,
greedy algorithms, structural controllability.

I. INTRODUCTION

MANY large-scale complex dynamical networks, such as
those arising in power grids [1], biological networks [2],

and industrial systems [3] necessitate a resilient and efficient
operation under dynamic and uncertain environments. Hence,
there has been a surge of interest to study controller design
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in such large-scale networks [4]–[13]. A fundamental design
problem is that of actuator placement in which the goal is
to select a subset from a finite set of possible placements for
actuators to optimize a desired network performance metric.

Variants of the actuator placement problem have been shown
to be NP-hard in general (see [7], [9], [14]). Thus, it is desir-
able to obtain scalable algorithms with provable suboptimal-
ity bounds. Earlier studies have adopted the forward greedy
algorithm. This algorithm extends the actuator set with the
most beneficial actuator iteratively to derive an approximate
solution [1]. Under a submodular network performance met-
ric and a cardinality constraint on the number of actuators,
the forward greedy algorithm is shown to enjoy a provable
performance guarantee [15]. However, some metrics do not
exhibit submodularity, including the metric in this article, that
is, the average energy required to reach any arbitrary direction
of the state space [16]. To alleviate this issue, submodularity
has been extended to weak submodularity using the notion of
submodularity ratio, quantifying how close a function is to being
submodular [17], [18]. Given this ratio, it is possible to derive a
performance guarantee for the forward greedy algorithm applied
to a larger class of performance metrics [16].

Nonetheless, the guarantees above are restricted to problems
subject to simple cardinality constraints. Given a cardinality
constraint, the resulting actuator set might not be capable of
moving the system over the entire state space, that is, might
not render the system controllable. To address this issue, we
need to include controllability as a constraint. However, to the
best of our knowledge, there is no approach to quantify the
forward greedy algorithm’s performance with a nonsubmodular
metric and a controllability constraint, nor to ensure feasibility
of the iterates of the greedy algorithm in such problems. On the
other hand, structural controllability constraints have been well-
studied. This controllability concept exploits only the graphical
interconnection structure of the dynamical system [5], [19]–[22].
Structurally controllable systems are those controllable after
a slight perturbation of the system parameters corresponding
to the fixed set of edges in the underlying network graph.
The authors in [23] have studied a leader selection problem
to obtain a structurally controllable system while minimizing
a submodular objective function. The structural controllability
constraint arising in the leader selection problem is proven to
give rise to a matroid constraint enabling the application of the
forward greedy algorithm [23]. However, the leader selection
problem is different from the actuator placement problem. The
former selects a set of leader nodes whose states can arbitrarily be
dictated to steer the remaining nodes to desired states, while the
latter does not permit the states to be dictated arbitrarily; instead,
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it selects a set of actuators that can influence all of the states
through the dynamics. Hence, this article pays special attention
to formulating the structural controllability constraints of the
actuator placement problem as a matroid constraint by proving
the equivalence of this concept in both the leader selection
problems and the actuator placement problems.

Given a matroid, [24] derives a performance guarantee for
the forward greedy algorithm when optimizing a submodular
objective. However, past work has not successfully derived
performance guarantees for optimizing weakly submodular ob-
jective functions, such as the aforementioned average energy
consumption metric, subject to a matroid. The first goal is to
obtain a guarantee for this setting. In Appendix A, we discuss
relevant existing guarantees from [15], [18], [24]–[28].

An inherent drawback of the forward greedy algorithm is that
any performance guarantee has to involve the objective function
evaluated at the empty set as the reference value, since the
actuator set expands starting from the empty set. This reference
value is in general large for the average energy consumption
metric, or even infinite [16], and it plays a great role toward the
tightness of the guarantee. In addition, many works have reported
the lack of ability of the forward greedy to correct errors made
in earlier steps [29], [30]. An alternative is to adopt the reverse
greedy, which excludes the least beneficial actuator iteratively
starting from the full set. In this case, any potential performance
guarantee would instead involve the objective function evaluated
at the full set, which is in general small for the performance
metric considered in this article.

Among the applications of the reverse greedy algorithm,
Chrobak et al. [31] studied the special setting of metric k-median
problem and this algorithm is shown to have a better performance
than the forward greedy algorithm. The work of [32] provides a
guarantee for minimizing a supermodular decreasing function
under cardinality constraints by exploiting a notion of function
steepness, while [33] extends this analysis to account for coma-
troid constraints.1 Our paper in [34] provides a counterexample
to the performance guarantee obtained in [33], and explains
where the mistake originates from in their proof. Nevertheless,
none of the problem settings can generalize the problem of
actuator placement considered in this article. This is because, in
addition to involving matroid constraints, via a reformulation,
the objective function of our problem will be shown to exhibit
weak supermodularity, which will be characterized by the notion
of curvature [18], [28]. To the best of our knowledge, there
is no performance guarantee for the reverse greedy algorithm
applicable to optimizing weakly submodular and weakly
supermodular objective functions (defined by submodularity
ratio and curvature, respectively) subject to matroid constraints.

Our main contributions are as follows.
i) We show that the minimization of the average energy

consumption metric under structural controllability constraints
can be reformulated as the maximization of a strictly increasing
weakly submodular function subject to matroid constraints, see
Lemma 2, Proposition 1, and Problem (5).

ii) We obtain a performance guarantee for the forward greedy
algorithm applied to this general class of matroid optimization
problems (see Theorem 1).2

1Comatroid is the complementary notion of a matroid (see [33]).
2Theorems 1 and 2 could be of independent interest for researchers working

on greedy algorithms. Preliminary results concerning the forward greedy—(i)
and (ii) above—were presented in a conference paper in [35]. This article
significantly extends that work by contributions (iii) to (vii), and utilizes the
newly introduced greedy notions of the curvature and the submodularity ratio.

iii) We show that the actuator placement problem has an-
other reformulation as the minimization of a strictly increasing,
weakly submodular, and weakly supermodular function sub-
ject to matroid constraints and a cardinality lower bound, see
Lemma 3, Proposition 3, and Problem (11). This reformulation
allows us to implement the reverse greedy algorithm.

iv) For the reverse greedy algorithm, we obtain a performance
guarantee employing both notions (see Theorem 2).

v) The average energy consumption metric is well-defined
only if we introduce a metric-modifying parameter [14]. To this
end, we design an algorithm with a provable performance to pick
such parameters (see Proposition 6 and Algorithm 3).

vi) For both algorithms, we show that the matroid feasibility
checks for the actuator placement can be done efficiently by
translating them into maximum flow problems over certain
auxiliary graphs (see Propositions 7 and 8). These results extend
[5], which associates structural controllability with the existence
of a perfect matching. We also provide a counterexample to a
feasibility check in [23] for the leader selection problem.

Finally, we provide numerical case studies with models based
on randomly generated networks and a large power grid. As
an additional insight, we demonstrate that the forward greedy
algorithm tends to pick higher degree actuators when compared
to the optimal and the reverse greedy solutions.

In the remainder, Section II introduces the problem formula-
tion and preliminaries. Sections III and IV apply the forward and
the reverse greedy algorithms, respectively, and obtain guaran-
tees. Section V proposes a method to pick a metric-modifying
parameter and feasibility check methods for greedy algorithms.
Numerical studies are presented in Section VI.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Problem Formulation

Consider a linear system with state vector x ∈ Rn. To
each state variable xi ∈ R, we associate a node vi ∈ V :=
{v1, . . . , vn}. A control input ui ∈ R can be exerted at each
node vi. Given a setS ⊂ V chosen as the actuator set, the system
dynamics can be written as

ẋ = Ax+B(S)u. (1)

Above, B(S) = diag(1(S)) ∈ Rn×n, where 1(S) denotes a
vector of size n whose ith entry is 1 if vi belongs to S and
0 otherwise. Let G = (V,E) denote a directed graph relating
to system (1) with nodes V and edges E, where the edge
(vj , vi) ∈ E if (A)ij �= 0. Similar to several previous studies on
structural controllability, e.g., [10], [23], throughout this article,
we assume thatG is strongly connected, which will be discussed
in Section V-B.

The pair (A,B(S)) is called controllable if for all x0, x1 ∈
Rn and T > 0 there exists a control input u : [0, T ]→
Rn that steers the system from x0 at t = 0 to x1 at
t = T . For linear time-invariant systems, controllability can
be verified by the rank of the controllability matrix P =

[B(S) AB(S) · · · An−1B(S)] ∈ Rn×n2
. However, the entries

in A are generally not exactly known but only approxi-
mately determined with small errors using system identifi-
cation techniques. Moreover, when dealing with large-scale
networked systems, it is often the case that we can only
rely on the topology but not on the particular weights [11].
Motivated by these particularities, we consider structural
controllability.
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Definition 1: (A,B) and (Â, B̂) with A,B, Â, B̂ ∈ Rn×n

are said to have the same structure if matrices [AB] and [Â B̂]
have zeros at the same entries. Given S ⊂ V , (A,B(S)) is
structurally controllable if there exists a controllable pair (Â, B̂)
having the same structure as (A,B(S)).

As it turns out, structural controllability is a generic property,
that is, the pair (A,B(S)) is structurally controllable if and
only if almost all of the pairs with the same structure are
controllable [21]. This implies that whenever (A,B(S)) is not
controllable but structurally controllable, it is possible to slightly
perturb the entries to ensure controllability [19]. Observe that
structural controllability depends on the positions of the nonzero
entries. Later, this will allow us to determine this property by
the graph G relating to the system.

Even if a system is controllable, an unacceptably large amount
of energy might be needed to reach a desired state. Specifically,
the work in [6] shows that if the number of actuators is kept
constant, then certain controllable systems are practically uncon-
trollable, since the energy consumption grows at least exponen-
tially with the number of statesn. Hence, it is crucial to minimize
this energy consumption. The minimum energy required to steer
the system from zero at t = 0 to x ∈ Rn at t = T is given by
x�W−1

T (S)x, where WT (S) =
∫ T

0 eAτB(S)B�(S)eA
�τdτ is

the controllability Gramian. To obtain an expression indepen-
dent of the initial state x, calculate the average energy required
over the unit sphere, ||x||2 = 1, as F (S) := tr(W−1

T (S)). This
expression is well-defined only when the set S renders the
system controllable. Inspired by [14], we introduce a small
positive number ε ∈ R+ to handle uncontrollable actuator sets
and propose the metric Fε : 2

V → R+

Fε(S) = tr((WT (S) + εI)−1), ∀S ⊂ V. (2)

In Section V-A, we discuss the choice of ε.
To make a system easier to control, we seek a set S ⊂ V

minimizing the metric above. Since in a large-scale network, the
number of actuators allowed is in general limited, we consider
a cardinality bound of K ∈ N on the actuators. Additionally,
we require that the actuators render the system structurally
controllable. Our main problem is formulated as

min
S⊂V

Fε(S)

s.t. |S| ≤ K, (A,B(S)) is structurally controllable.
(3)

Assume K is large enough to ensure feasibility. In Section V-B,
we discuss how to determine the smallest K for feasibility.
Problem (3) is a combinatorial optimization, and to the best
of our knowledge, no computationally feasible solution method
has ever been proposed. Existing works have either studied
additive/modular objectives [8], [11], [36], [37] (e.g., actuator
installation costs, minimizing K directly), or included only
cardinality constraints [1], [16]. Notice that neither our objective
is additive nor we have only cardinality constraints. Later, we
will adopt efficient heuristics to derive approximate solutions.

B. Preliminaries

We first introduce widely adopted notions for the properties
of set functions and set constraints.

1) Properties of Set Functions: Given a ground set V and
a set function f : 2V → R, we say f is (strictly) increasing if
f(S1) ≤ (<)f(S2) for any S1 � S2 ⊂ V . If −f is (strictly)
increasing, we say f is (strictly) decreasing. For an increasing
set function, the marginal gain from the addition of a certain

element v ∈ V to a set S ⊂ V varies for different S. For many
set functions in practical problems the marginal gain diminishes
asS expands (see the examples in [38] and [39]). Submodularity
describes this property and submodularity ratio describes how
far a nonsubmodular function is from being submodular. For the
following, denote the marginal gains by ρU (S) := f(S ∪ U)−
f(S), ∀S,U ⊂ V. For notational simplicity, we use v and {v}
interchangeably for singleton sets.

Definition 2: For an increasing function f : 2V → R, the
submodularity ratio is the largest γ ∈ R+ such that γρv(S ∪
U) ≤ ρv(S), ∀S,U ⊂ V, ∀v ∈ V \(S ∪ U). It can be verified
that γ ∈ [0, 1]. A set function f with submodularity ratio γ is
called γ-submodular. A γ-submodular set function is said to be
submodular if γ = 1 and weakly submodular if 0 < γ < 1.

In Appendix B, we connect Definition 2 with another existing
notion of submodularity ratio and discuss the necessity of intro-
ducing this notion as per Definition 2 for the guarantee derived
for the forward greedy algorithm in Section III.

Other than submodularity, another widely used notion is
supermodularity, that is, the marginal gain from the addition
of v /∈ S to the set S increases as S expands. By introducing
supermodularity and the curvature, that is, how far a nonsuper-
modular function is from being supermodular, we obtain a more
precise description on how the marginal gains change.

Definition 3: For an increasing function f : 2V → R, the
curvature is the smallest α ∈ R+ such that ρv(S ∪ U) ≥
(1− α)ρv(S), ∀S,U ⊂ V, ∀v ∈ V \(S ∪ U). It can be veri-
fied that α ∈ [0, 1]. Function f with curvature α is called α-
supermodular. An α-supermodular function is supermodular if
α = 0 and weakly supermodular if 0 < α < 1.

To see how submodularity ratio and curvature are related,
notice that for an increasing set function f the submodularity
ratio γ and the curvature α satisfy

γ = min
S,U,

v∈V\(S∪U)

ρv(S)

ρv(S ∪ U)
≤ max

S,U,
v∈V\(S∪U)

ρv(S)

ρv(S ∪ U)
=

1

1− α
.

(4)
2) Properties of Set Constraints: Many combinatorial op-

timization problems from the literature are subject to constraints
that are more complex than simple cardinality constraints (see
the examples in [40], [41]). Among those, we introduce ma-
troids, since they will generalize reformulations of the con-
straints found in Problem (3), and they allow performance
guarantees for greedy algorithms [42].

Definition 4: A matroidM is an ordered pair (V,F) consist-
ing of a ground set V and a collection F of subsets of V which
satisfies (i)∅ ∈ F , (ii) ifS, S ′ ∈ F andS ′ ⊂ S, thenS ′ ∈ F , (iii)
if S1, S2 ∈ F and |S1| < |S2|, there exists v ∈ S2\S1 such that
v ∪ S1 ∈ F . Every set inF is called independent, and maximum
independent sets refer to those with the largest cardinality.

To adopt the reverse greedy algorithm, an additional concept
will be required, that is, the dual of a matroid.

Definition 5: Given a matroid (V,F), let F∗ =
{U |∃ a maximum independent set M ∈ F such that U ⊂
V \M}. The pair (V,F∗) is the dual of the matroid (V,F).

We characterize its structure in the following lemma.
Lemma 1: The pair (V,F∗), the dual of a matroid (V,F), is

also a matroid.
Proof: Suppose {Mi}qi=1 is the collection of all maximum in-

dependent sets in matroid (V,F). From [43, Ch. 2] we have that
{V \Mi}qi=1 defines a collection of all maximum independent
sets for another matroid denoted by (V, F̃). In the following, we
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prove thatF∗ = F̃ . For anyU ∈ F∗, there existsM , a maximum
independent set in F , such that U ⊂ V \M . Since V \M ∈ F̃
and (V, F̃) is a matroid, the setU also belongs to F̃ from property
(ii) in Definition 4. Conversely, if U ∈ F̃ , according to property
(iii) in Definition 4,U is a subset of some maximum independent
set in F̃ . Consequently, there exists a maximum independent set
M ∈ F such that U ⊂ V \M. Thus, U ∈ F∗. This concludes
that F∗ = F̃ and thus (V,F∗) is also a matroid. �

The work in [43, Ch. 2] defines the dual concept as (V, F̃),
and the proof above verifies that (V,F∗) we have in Definition 5
is an equivalent reformulation. This reformulation will help us
present the proof of Proposition 3 in a more clear way. �

III. FORWARD GREEDY ALGORITHM

In the following, we reformulate Problem (3) as the maxi-
mization of a strictly increasing weakly submodular function
subject to matroid constraints. We then obtain a guarantee for a
forward greedy algorithm over matroid constraints.

A. Properties of the Objective

Intuitively, with more input nodes, system (1) would be easier
to control and thus the metric Fε in (2) would be smaller. This
intuition can be readily verified as follows.

Lemma 2: The metricFε = tr((WT (S) + εI)−1) satisfies the
following statements: (i) Fε is strictly decreasing, (ii) −Fε is
weakly submodular with submodularity ratio γf

ε.
The proof is relegated to Appendix C. Together with the fact

that the structural controllability is preserved under actuator
set expansion, Lemma 2 implies that the optimal solution to
Problem (3) should contain exactly K nodes.

B. Reformulation of the Constraint Set

In combinatorial optimization problems with only cardinality
constraints, the forward greedy algorithm starts from the empty
set and at tth iteration, adds the most marginally beneficial
node vf

t to the actuator set. It terminates when the cardinality
of the actuator set is K. When applied to Problem (3), this
method might return an actuator set under which the system
is not structurally controllable. To this end, we need to restrict
the greedy iterates St = {vf

1, . . . , v
f
t}, for t = 1, . . . ,K, such

that the set SK returned by the forward greedy algorithm is
guaranteed to satisfy structural controllability.

Since the optimal solution to Problem (3) contains exactly
K nodes, we define CK = {S ⊂ V | |S| = K and the system
is structurally controllable under S} and rewrite Problem (3)
as the minimization of Fε over the set collection CK . In the
procedure of the forward greedy algorithm, the set St has to be
a subset of some set in CK , since otherwise the greedy solution
SK would not belong to CK . Thus, define C̃K = {Ω | ∃S ∈
CK such that Ω ⊂ S} and reformulate (3) as

max
S⊂V

−Fε(S) s.t. S ∈ C̃K . (5)

The strict monotonicity of−Fε ensures that the optimal solution
to Problem (5) coincides with that of Problem (3). As such, we
consider solving Problem (5) as an equivalent characterization
of Problem (3).

Next, we show that the feasible region of Problem (5) char-
acterizes a matroid, which will allow us to derive performance
guarantees for the greedy solution SK .

Algorithm 1: Forward Greedy Algorithm Over Matroid.

Input: set function f , ground set V and matroid (V,F)
Output: actuator set Sf

Function FORWARDOVERMATROID(f, V,F)
S0 = ∅, U0 = ∅, t = 1
while U t−1 �= V and |St−1| < Kdo
i∗(t) = argmaxi∈V\Ut−1 ρi(S

t−1)
if St−1 ∪ {i∗(t)} /∈ F then
U t−1 ← U t−1 ∪ {i∗(t)}

else
ρt−1 ← ρi∗(t)(S

t−1) and vf
t = i∗(t)

St ← St−1 ∪ {vf
t} and U t ← U t−1 ∪ {vf

t}
t← t+ 1

end if
end while
Sf ← St−1

end function

Proposition 1: M = (V, C̃K) is a matroid.
To prove this, we establish the equivalence between structural

controllability of (A,B(S)) in Problem (3) and structural con-
trollability of the system with the set S chosen as a leader set
in a corresponding leader selection problem. We then invoke a
result from [23] proving the matroid structure of the structural
controllability constraints in leader selection problems. For the
details and discussions, we refer to the proof in Appendix D.
This equivalence result will later be utilized in Sections V-B
and V-C to bring in results from the leader selection literature.

We now restrict the iterates of the forward greedy algorithm to
lie in the set collection C̃K . As a remark, given St ∈ C̃K for t <
K, by Definition 4, we can always find a node v ∈ V \St such
thatSt ∪ v ∈ C̃K , as long as CK �= ∅.Therefore, it is guaranteed
that at iteration K we obtain an actuator set in CK .

C. Performance Guarantee

In the previous section, we showed that the objective function
−Fε is γf

ε-submodular in Lemma 2 and the feasible region C̃K
characterizes a matroid in Proposition 1. Thus, Problem (5) falls
into the following class of optimization problems:

max
S⊂V

f(S), strictly increasing and γ-submodular

s.t. S ∈ F , whereM = (V,F) is a matroid
(6)

where the cardinality of any maximum independent set in F
is K. Let S∗ denote its optimal solution.

The forward greedy over a matroid was first introduced in
[24] for submodular objectives. This algorithm is presented
in Algorithm 1. At the tth iteration, we check the feasibility
of the node with the largest marginal gain in V \St−1. If the
actuator set obtained by adding this node to St−1 does not
belong to F , we exclude the node from consideration. Among
the remaining ones, we check the feasibility of the node with
the largest marginal gain until a feasible node vf

t is found. Then,
St = {vf

t} ∪ St−1 is the actuator set returned by the tth iteration.
The final actuator set is Sf := SK . The feasibility check ensures
that St ∈ F and hence Sf belongs to F .

We use U t ⊂ V for 0 ≤ t ≤ K − 1 to denote all the nodes
having been considered by the feasibility check before vf

t+1. We
define the marginal gains as ρt = f(St+1)− f(St).
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Using the matroid structure and the submodularity ratio, we
can state our first main result as follows.

Theorem 1: If Algorithm 1 is applied to Problem (6), then

f(Sf)− f(∅)
f(S∗)− f(∅) ≥

γ3

γ3 + 1
. (7)

The proof is relegated to Appendix E. The idea of the proof
extends the work in [24], which derives a performance guaran-
tee for matroid optimization featuring a submodular objective.
When γ = 1, the guarantee in (7) coincides with that of [24], de-
rived for a submodular f . As a remark, for Problem (6), another
performance guarantee is offered by [26] but in expectation for a
randomized algorithm. We refer to Appendix B for a comparison
of these two guarantees.3

Given any function f , it is difficult to derive its submodularity
ratio because the computation in Definition 2 involves Ω(2n)
inequalities. In the proof of Theorem 1, only a subset of these
inequalities are utilized. Via this observation, the following
corollary proposes a computationally more efficient approach.

Corollary 1: Let γfg be the largest γ̂ that satisfies (a) f(S ∪
Sf)− f(Sf) ≤ γ̂−1

∑
j∈S\Sf ρj(S

f) for any S with |S| = K,

(b) ρj(S
f) ≤ γ̂−1ρj(St−1), ∀t ≤ K, ∀j ∈ V , (c) f(Si2+1)−

f(Si2) ≤ γ̂−1(f(Si1 ∪ {vf
i2+1})− f(Si1)), for any i1 < i2.

Then,γfg is called the greedy submodularity ratio for the forward
greedy algorithm, with γfg ≥ γ, and

f(Sf)− f(∅)
f(S∗)− f(∅) ≥

(γfg)3

(γfg)3 + 1
. (8)

The greedy submodularity ratio can be obtained after the
forward greedy algorithm is completed by analyzing O((nK))
inequalities. Since γfg ≥ γ, the performance guarantee in (8) is
better than (7). Notice that γfg changes with the constraint set of
the problem, since the inequalities defining γfg would then be
different. In contrast, submodularity ratio γ depends only on the
objective function.

Next, we substitute f = −Fε and F = C̃K into the perfor-
mance guarantee (8) of the general setting (6).

Corollary 2: Suppose we apply Algorithm 1 to Problem (5).
Denote the actuator set returned as Sf

ε and the greedy submod-
ularity ratio of −Fε as γfg

ε . Then, Sf
ε satisfies

Fε(∅)− Fε(S
f
ε)

Fε(∅)− Fε(S∗)
≥ (γfg

ε )
3

(γfg
ε )3 + 1

. (9)

Since the forward greedy algorithm starts expanding from the
empty set, performance guarantees can only assess f(Sf) by
considering f(∅) as the reference. If f(∅) = 0, the performance
guarantee (8) is reduced to f(Sf)/f(S∗) ≥ γ3/(1 + γ3). In this
case, we only lose a fraction of the optimal objective by adopting
the forward greedy algorithm. However, for our actuator place-
ment problemFε(∅) = nε−1, and the performance guarantee (9)
is equivalent to

Fε(S
f
ε) ≤

1

(γfg
ε )3 + 1

Fε(∅) + (γfg
ε )

3

(γfg
ε )3 + 1

Fε(S
∗). (10)

Since ε is a small positive number and n is in general large,
the guarantee above can be loose.4 In the next section, we

3The works in [25] and [18] utilize also the curvature to derive performance
guarantees for the forward greedy applied to cardinality constrained problems.
Exploiting this notion for matroid constraints is part of our ongoing work.

4If there exists an initial actuator set Sini �= ∅ rendering the system control-
lable, we can potentially mitigate this issue, since the reference of the guarantee

consider a variant of the greedy algorithm that comes along with
a performance guarantee that does not depend on Fε(∅).

IV. REVERSE GREEDY ALGORITHM

To derive an alternative guarantee, we consider the reverse
greedy algorithm (also called the stingy or greedy descent). This
algorithm starts from the full set, and at each iteration, excludes
the node with the least marginal gain from the actuator set of the
previous iteration until a solution is reached. Such an approach
allows to have the reference as Fε(V ), which is significantly
smaller than Fε(∅) in practice.

A. Properties of the Objective

For the reverse greedy algorithm, we reformulate our metric
as F r

ε(R) := Fε(V \R), for all R ⊂ V . The following lemma
characterizes the properties of this function.

Lemma 3: The set function F r
ε is strictly increasing, weakly

submodular with submodularity ratio γr
ε > 0 and weakly super-

modular with curvature αr
ε < 1.

Proof: Regarding the strict monotonicity, suppose S1 � S2.
Since Fε is strictly decreasing and V \S2 � V \S1, Fε(V \
S2) > Fε(V \S1), which implies F r

ε(S2) > F r
ε(S1). Due to

strict monotonicity of F r
ε , it follows readily from the equalities

shown in (4) that the submodularity ratio is strictly greater
than 0 and the curvature is strictly less than 1. Thus, F r

ε is
weakly submodular with γr

ε > 0 and weakly supermodular with
αr
ε < 1. �
Recall that the submodularity ratio of−Fε is γf

ε. Now denote
its curvature as αf

ε, which can easily be shown to satisfy αf
ε < 1.

The following connects (γf
ε, α

f
ε) and (γr

ε, α
r
ε).

Proposition 2: γr
ε = 1− αf

ε and αr
ε = 1− γf

ε.
The proof is relegated to Appendix F. The proposition above

provides an insight into how the submodularity ratio and the
curvature of F r

ε relates to those of −Fε.

B. Reformulation of the Constraint Set

The reverse greedy algorithm has to return an exclusion
set Rr such that the resulting actuator set V \Rr contains K
nodes, and renders the system structurally controllable, that
is, V \Rr ∈ CK . We collect all such exclusion sets and form
RK = {R |V \R ∈ CK}. Suppose after the tth node exclusion
of the reverse greedy algorithm, all the nodes excluded form
a set Rt = {r1, . . . , rt}, where ri ∈ V for all i. The set Rt

has to be a subset of some set in RK for any t = 1, . . . , N ,
where N := n−K, since otherwise when N exclusions are
completed, the resulting actuator set would not belong to CK .
Thus, define R̃K := {Q | ∃R ∈ RK such that Q ⊂ R}, and re-
formulate Problem (3) as

min
R⊂V

F r
ε(R) s.t. R ∈ R̃K and |R| = N. (11)

The strict monotonicity of F r
ε(R) again ensures that the optimal

solution to Problem (11) coincides with that of Problem (3). Note
that cardinality constraint in (11) can equivalently be replaced
with an inequality constraint |R| ≥ N .

Next, we show that R̃K characterizes a matroid.
Proposition 3: Mr = (V, R̃K) is a matroid.

would then be given by Fε(S
ini). Clearly, such applications also allow to set

ε = 0, and drop structural controllability constraints.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on March 21,2023 at 00:18:34 UTC from IEEE Xplore.  Restrictions apply. 



5850 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 66, NO. 12, DECEMBER 2021

Proof: We prove that (V, R̃K) is the dual of (V, C̃K), that
is, R̃K = C̃∗K . Note that we can then invoke Lemma 1 showing
that the dual of a matroid is also a matroid. For any Q ∈ R̃K ,
according to the definition of R̃K , there existsR ∈ RK such that
Q ⊂ R. We haveS = V \R ∈ CK forR ∈ RK . Since |S| = K,
S is a maximum independent set in C̃K . Considering Q ⊂ V \S,
we concludeQ ∈ C̃∗K .Conversely, for anyQ ∈ C̃∗K , there exists a
maximum independent set S ∈ C̃K such that Q ⊂ V \S. From
the definition of C̃K , we know that S ∈ CK . Thus, we obtain
Q ∈ R̃K . This concludes the equivalence of R̃K and C̃∗K . �

Similar to the discussions in Section III, by restricting the
iterates of the reverse greedy algorithm to lie in the set collection
R̃K , we obtain a final exclusion set in RK with cardinality N .
This implies that the final actuator set lies in CK .

C. Performance Guarantee

In the previous section, we showed that the objective function
F r
ε is γr

ε-submodular and αr
ε-supermodular in Lemma 3, and the

feasible region of R̃K characterizes a matroid in Proposition 3.
Thus, Problem (11) falls into the following class of optimization
problems:

min
R⊂V

f(R), strictly increasing, γ-submodular,

and α-supermodular

s.t. R ∈ F ,M = (V,F) is a matroid, |R| ≥ N

(12)

where the cardinality of maximum independent sets in F is
N .5 Let R∗ denote its optimal solution. Clearly, R∗ is the set
complement of S∗, that is, R∗ = V \S∗.

Define set function fo such that fo(R) = f(V \R) for all R.
In Problem (11), fo corresponds to Fε. Observe that the forward
greedy algorithm applied to the minimization of the function f
is equivalent to the reverse greedy algorithm applied to the
minimization of the function fo. This algorithm is presented
in Algorithm 2. Different from Algorithm 1, at each iteration,
Algorithm 2 implements the feasibility check on the node with
the least marginal gain.

For Algorithm 2, the following definitions are in order. We de-
fine ρj(R) := f(R ∪ j)− f(R), ρt := f(Rt)− f(Rt−1) and
rt := Rt\Rt−1. The set U t denotes the set of nodes having
been considered by the feasibility check before rt+1. The final
exclusion set is Rr := RN , and it lies inRK .

A special case of Problem (12) was previously shown to be
hard to approximate. Specifically, for the problem of minimiz-
ing a submodular increasing function over only a cardinality
lower bound, the work in [44] shows that there is no bicriteria
approximation performing better than o(

√
n/logn), where n is

the cardinality of the ground set.6 Next, we extend this result by
providing novel counterexamples showing that a strictly positive
submodularity ratio and a curvature bounded away from 1 is
indispensable to obtain any meaningful performance guarantee
for Problem (12). The proofs of Propositions 4 and 5 are provided
online in [45].

5The performance guarantee we derive in this section will be valid as long as
the cardinality of maximum independent sets inF are larger than or equal to N ,
since this would ensure the feasibility of the problem.

6Bicriteria approximation refers to approximating both the constraint require-
ment and the optimal objective. We refer to [44] for the exact description.

Algorithm 2: Reverse Greedy Algorithm Over Matroid.

Input: set function fo, ground set V , matroid (V,F)
Output: exclusion set Rr

function REVERSEOVERMATROID(fo, V,F)
R0 = ∅, U0 = ∅, t = 1
while U t−1 �= V and |Rt−1| < Ndo
j∗(t) = argminj∈V\Ut−1 ρj(R

t−1)
if Rt−1 ∪ j∗(t) /∈ F then
U t−1 ← U t−1 ∪ j∗(t)

else
ρt ← ρj∗(t)(R

t−1) and rt = j∗(t)
Rt ← Rt−1 ∪ j∗(t) and U t ← U t−1 ∪ j∗(t)
t← t+ 1

end if
end while
Rr ← Rt−1

end function

Proposition 4: In Problem (12), one cannot derive any upper
bound on (f(Rr)− f(∅))/(f(R∗)− f(∅)) if no strictly positive
lower bound on γ is known.

Proposition 5: In Problem (12), one cannot derive any upper
bound less than N on (f(Rr)− f(∅))/(f(R∗)− f(∅)), if no
upper bound less than 1 is known for α.

The propositions above conclude that we have to utilize both
the submodularity ratio and the curvature. Our second main
result is shown in the following theorem.

Theorem 2: If Algorithm 2 is applied to (12), then

f(Rr)− f(∅)
f(R∗)− f(∅) ≤

γ

1− γ

(
(2N + 1)

1−γ
γ(1−α) − 1

)
. (13)

The proof extends the linear programming proofs utilized
by [25], which considers the maximization of increasing sub-
modular functions over matroid constraints, and by [18], which
considers the maximization of increasing, nonsubmodular non-
supermodular functions over cardinality constraints. In contrast,
our proof applies to the minimization of increasing, nonsubmod-
ular nonsupermodular functions over matroids.

The main idea of the proof is to provide a series of inequal-
ities that upperbound ρt by f(R∗)− f(∅), for each iteration
t. This way, f(Rr)− f(∅) =∑N

t=1 ρt has an upper bound
expressed by f(R∗). For the following lemma, we recall that
Rt := {r1, . . . , rt} is the set obtained by the greedy algorithm
after the exclusion of rt.

Lemma 4: For any t ∈ {0, . . . , N − 1}, ρt satisfies

f(R∗)− f(∅) ≥
(
1− 1

γ

) ∑
i:ri∈Rt\R∗

ρi +
∑

i:ri∈Rt∩R∗
ρi

+ (1− α)(N − t)ρt+1. (14)

Proof: Suppose R∗ = {r∗1, . . . , r∗N}. Rewrite f(R∗ ∪Rt)
as two telescoping sums f(R∗ ∪Rt) = f(R∗) +∑t

i=1 ρri(R
∗ ∪Ri−1), and f(R∗ ∪Rt) = f(Rt) +∑N

k=1 ρr∗k({r∗1, . . . , r∗k−1} ∪Rt), which is directly obtained
from the definition of ρr. For any i such that ri ∈ R∗ ∩Rt, we
have ρri(R

∗ ∪Ri−1) = 0. Using this, and the fact that both
telescoping sums above are equal to f(R∗ ∪Rt), we obtain

f(R∗) +
∑

i:ri∈Rt\R∗
ρri(R

∗ ∪Ri−1) = f(R∗ ∪Rt)
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= f(Rt) +

N∑
k=1

ρr∗k({r∗1, . . . , r∗k−1} ∪Rt). (15)

Invoking the definitions of submodularity ratio and curvature,
for each i such that ri ∈ Rt\R∗, we have

ρri(R
∗ ∪Ri−1) ≤ 1

γ
ρi (16)

and for any k ∈ {1, . . . , N}
ρr∗k({r∗1, . . . , r∗k−1} ∪Rt) ≥ (1− α)ρr∗k(R

t). (17)

By the definition of a matroid, there exists Rt
c ={r∗c1 , . . . , r∗cN−t} ⊂ R∗\Rt such that Rt

c ∪Rt ∈ F . Con-
sequently, for any 1 ≤ i ≤ N − t, we have Rt ∪ r∗ci ∈ F .
Thus, adding r∗ci to Rt has to be feasible in the matroid. If
ρr∗ci (R

t) < ρrt+1
(Rt) = ρt+1, r∗ci could be added to Rt to form

Rt+1 instead of rt+1. This yields a contradiction, implying that
the inequality ρr∗ci (R

t) ≥ ρrt+1
(Rt) = ρt+1 holds for any i.

Hence, we obtain

N∑
k=1

ρr∗k(R
t) ≥

∑
r∗k∈Rt

c

ρr∗k(R
t) ≥ (N − t)ρt+1. (18)

Next, by substituting (16)–(18) into (15), we obtain

f(R∗)− f(∅) +
∑
i:

ri∈Rt\R∗

ρi
γ
≥

t∑
i=1

ρi + (1− α)(N − t)ρt+1.

(19)
By grouping the terms in (19), we obtain (14). �

Next, we can construct a linear program, where the solution
provides an upper bound for f(Rr)−f(∅)

f(R∗)−f(∅) .
Proof of Theorem 2: Let xi = ρi/(f(R

∗)− f(∅)), we have
(f(Rr)− f(∅))/(f(R∗)− f(∅)) =∑N

i=1 xi. Note that xi ≥ 0
for all i. Suppose R∗ ∩Rr = {ri1 , ri2 , . . .}. To give an up-
per bound for this ratio, we exploit the inequalities (14) and
build the linear programming problem (20) shown at the
bottom of this page to compute the largest possible sum,∑

, to compute the largest possible sum,
∑N

i=1 xi. To get
an upper bound for

∑N
i=1 xi, we consider the following re-

laxed problem where the unit entries in (20) are replaced by

−(1− γ)/γ

Z̄(N, γ, α) = max

N∑
i=1

xi, s.t.xi ≥ 0 and

⎡
⎢⎢⎢⎣
(1− α)N

−(1− γ)/γ (1− α)(N − 1)
...

...
. . .

−(1− γ)/γ −(1− γ)/γ . . . (1− α)

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
x1

x2

...
xN

⎤
⎥⎥⎥⎦≤
⎡
⎢⎢⎢⎣
1

1
...
1

⎤
⎥⎥⎥⎦.

(21)
Since we require that xi ≥ 0 for any i, any feasible so-
lution to (21) is also feasible to (20). Thus, Z̄(N, γ, α) ≥
Z(N, γ, α) for any N , γ and α. We claim that the opti-
mum x∗ of Problem (21) makes all the inequality constraints
tight. This is easily seen by rewriting the inequalities as
xt ≤ 1

(1−α)(N−t+1) (1 +
1−γ
γ

∑t−1
i=1 xi), t = 1, . . . , N. Notice

that for submodular functions, we have γ = 1. Using the
claim above and considering the fact that x−1 < ln(x+ 1/2)−
ln(x− 1/2) for any x ≥ 1, we can directly obtain the following
guarantee:

(f(Rr)− f(∅))
(f(R∗)− f(∅)) ≤

N∑
i=1

x∗i =
N∑
i=1

1

i(1− α)
≤ ln(2N + 1)

1− α
.

(22)
Next, we focus our efforts on the case in which 0 < γ < 1

and 0 ≤ α < 1. We obtain

Z̄(N, γ, α) =
1

b

N∏
i=1

(
1 +

b

(N − i+ 1)(1− α)

)
− 1

b
(23)

where b = (1− γ)/γ. Considering Z̄(N, γ, α) ≥
Z(N, γ, α) ≥ (f(Rr)− f(∅))/(f(R∗)− f(∅)) and

Z̄(N, γ, α)=b−1exp

(
N∑
i=1

ln

(
1+

b

(N − i+ 1)(1− α)

))
−b−1

≤ b−1exp

(
b

(1− α)

N∑
i=1

1

(N − i+ 1)

)
− b−1

≤ b−1exp

(
b

(1− α)

(
ln

(
N+

1

2

)
−ln

1

2

))
−b−1

= b−1(2N + 1)
b

(1−α) − b−1.
(24)

Z(N, γ, α) = max
N∑
i=1

xi, s.t. xi ≥ 0 and

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1− α)N

−(1− γ)/γ (1−α)
×(N−1)

...
...

. . .

−(1− γ)/γ −(1− γ)/γ . . . (1−α)
×(N−i1+1)

−(1− γ)/γ −(1− γ)/γ . . . 1
. . .

...
... . . .

...
...

−(1− γ)/γ −(1− γ)/γ . . . 1 . . . (1− α)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

...

xi1

...

xN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≤

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1
...

1

1
...

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (20)
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TABLE I
COMPARISON BETWEEN PERFORMANCE GUARANTEES Z̄ AND Zu

The first equality rewrites the multiplication in Z̄ into an ex-
ponential sum. The inequalities follow from the fact that ln(1 +
x) < x for anyx > 0 andx−1 < ln(x+ 1/2)− ln(x− 1/2) for
anyx ≥ 1. By substituting b = (1− γ)/γ back into the last term
in (24), we get (13). �

Let Zu(N, γ, α) = γ
1−γ ((2N + 1)

1−γ
γ(1−α) − 1). Table I illus-

trates how well the upper bound Zu approximates the original
guarantee Z̄, stated in (23). For the supermodular case α = 0,

we obtain the guarantee γ
1−γ ((2N + 1)

1−γ
γ − 1). Via the up-

perbound in (22), for the submodular case γ = 1, we obtain
ln(2N+1)

1−α . As a remark, we can verify that the guarantee in (23)
is not tight. Suppose f is modular, that is, both supermodular and
submodular. Then, we have (f(Rr)−f(∅))

(f(R∗)−f(∅)) ≤ ln(2N + 1). How-
ever, modularity of f implies that the greedy algorithm returns
the optimal solution [42]. One reason for this looseness is that, to
ensure the tightness of the relaxation from (20) to (21), we must
have R∗ ∩Rt = ∅, which then contradicts the modularity of the
objective function. To the best of our knowledge, Theorem 2
provides the first performance guarantee for the reverse greedy
algorithm for this setting involving the submodularity ratio and
the curvature.7

Similar to our analysis in Section III, we propose computa-
tionally more efficient approaches to deriving both the submod-
ularity ratio and the curvature.

Corollary 3: Let γrg be the largest γ̂ that satisfies ρrt(R ∪
Rt−1) ≤ γ̂−1ρt, for all t ≤ N , and R with |R| = N . Let αrg be
the smallest α̂ that satisfies ρr(R ∪Rt) ≥ (1− α̂)ρr∗k(R

t), for
all t ≤ N , R with |R| = N − 1. Then, γrg is called the greedy
submodularity ratio for the reverse greedy algorithm, with γrg ≥
γ, and αrg is called the greedy curvature for the reverse greedy
algorithm, with αrg ≤ α. The performance guarantee is given
by

f(Rr)− f(∅)
f(R∗)− f(∅) ≤ Zu(N, γrg, αrg). (25)

The greedy submodularity ratio above can be obtained after
the reverse greedy algorithm is completed by analyzing N

(
n
N

)
inequalities, whereas the greedy curvature can be obtained by
analyzing N

(
n

N−1
)

inequalities. Since γrg ≥ γ and αrg ≤ α, it
can easily be verified that Zu(N, γrg, αrg) ≤ Zu(N, γ, α).

We substitutef = F r
ε andF = R̃K to conclude the following.

7[28, Th. 7] offers a guarantee for the forward greedy algorithm applied to
minimizing increasing functions over a matroid as in Problem (12). This is given
by 1/(1− c), where c quantifies how far a function is from being modular.
This novel notion is a significantly stronger requirement than having both the
submodularity ratio and the curvature simultaneously (see [28, eq. (6)]). Hence,
it is not possible to compare it with our guarantee other than the case of a
modular objective. In that case, setting c = 0 confirms the optimality of the
greedy algorithm. Note that computing this novel notion requires an exhaustive
enumeration and it does not allow any greedy computation, which can limit its
applications.

Algorithm 3: Finding ε With Provable Performance.
Input: approximation factor ξ, initial value ε0
Output: parameter ε

function ProperEPξ, ε0
i = 0
while εi ≥ ξλ1(Sεi) do

let εi+1 ← 1
2ξλ1(Sεi) and i← i+ 1

end while
end function

Corollary 4: Suppose we apply Algorithm 2 to Problem (11).
Denote the exclusion set returned as Rr

ε and the greedy submod-
ularity ratio of F r

ε as γrg
ε and the greedy curvature of F r

ε as αrg
ε .

Then, Rr
ε satisfies

Fε(V \Rr
ε)− Fε(V )

Fε(S∗)− Fε(V )
≤ Z rg

u , or equivalently

Fε(V \Rr
ε) ≤ Z rg

u Fε(S
∗) + (1− Z rg

u )Fε(V ) (26)

where Z rg
u := Zu(N, γrg, αrg).

In contrast to the forward greedy guarantee, Fε(∅) does not
appear in the guarantee above, which is generally large. On the
other hand, the guarantee above scales with the problem size,
specifically, with N = n−K. In the numerics, we show that
both greedy algorithms achieve comparable performance in our
problem, and at the same time much better performance than
what the theoretical guarantees suggest. In practice, it could be
useful to implement both greedy algorithms (which can be done
efficiently with polynomial time complexity) and choose the best
out of the two.

V. IMPLEMENTATION ASPECTS

Two issues have to be addressed to implement Algorithms 1
and 2 for the actuator placement problem. First, we have to select
a metric-modifying parameter ε. Second, we need feasibility
check methods for the set collections C̃K and R̃K .

A. Algorithm for Picking a Metric-Modifying Parameter ε

The performance guarantees (10) and (26) relate toFε instead
of the original metric F . On the one hand, if ε is large, a perfor-
mance guarantee on Fε may not be applicable as a performance
guarantee on F since Fε(Sε) < F (Sε). On the other hand, if ε
is small, the matrix WT (S) + εI may be close to singularity.
Such ill-conditioned matrices can occur, especially at the early
stages of the forward greedy algorithm. Denote the actuator set
returned by a greedy algorithm applied to Fε as Sε. This could
be the solution returned by either Algorithms 1 or 2. Given an
approximation factor ξ > 0 as a design parameter, we propose
an algorithm to pick ε such that F (Sε) < (1 + ξ)Fε(Sε). This
inequality implies that guarantees in (10) and (26) translate
into guarantees for the metric F . The method is presented
in Algorithm 3. Denote the eigenvalues of the controllability
Gramian WT (S) as λ1(S) ≤ · · · ≤ λn(S).

Proposition 6: Suppose given any ε > 0, WT (Sε) is invert-
ible. Then, for any approximation factor ξ > 0 and any initial
value ε0 > 0, Algorithm 3 returns (ε, Sε) pair that satisfies
F (Sε) < (1 + ξ)Fε(Sε).

Proof: If the controllability Gramian WT (Sε) is invertible,
then we have that λ1(Sε) > 0. Since there are finitely many
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combinations of actuators, the set {λ1(Sε)|∀ε > 0} has a pos-
itive lower bound, denoted as λ0. In the iterations of Algo-
rithm 3, it holds that εi+1 < 1

2εi, because εi > ξλ1(Sεi) and
εi+1 = 1

2ξλ1(Sεi). Hence, there exists some j such that εj <
ξλ0 ≤ ξλ1(Sεj ). Then, we obtain F (Sεj ) =

∑n
i=1

1
λi(Sεj

) <∑n
i=1

1+ξ
λi(Sεj

)+εj
= (1 + ξ)Fεj (Sεj ). This inequality concludes

the proof. �
For the proof above, we assumed that given any ε > 0, the

controllability Gramian WT (Sε) is invertible. This is a strong
assumption since, as previously mentioned, structural controlla-
bility does not imply controllability. In the numerics, we always
ended up with a controllable system with any of the greedy
algorithms. This can be explained either by the objective of the
problem, which is to minimize the average energy consumption
or the choice of a large cardinality K.

We now provide the resulting performance guarantees.
Corollary 5: Given the factor ξ, suppose we apply Algo-

rithm 3 to pick ε. From Corollaries 2 and 4, we have

F (Sf
ε) < (1 + ξ)

[
1

(γfg
ε )3 + 1

F (∅) + (γfg
ε )

3

(γfg
ε )3 + 1

F (S∗)

]

F (V \Rr
ε) < (1 + ξ) [Z rg

u F (S∗) + (1− Z rg
u )Fε(V )]

where S∗ is the optimal solution to (3).

B. Feasibility Check Over C̃K
When applied to Problem (5), the forward greedy algorithm

has to ensure that the actuator set returned by each iteration lies
in C̃K . The work of [5] and [46] proposes a method to determine
whether a given set S with |S| = K belongs to CK . This result
is not directly applicable to answer whether an actuator set S
with |S| < K returned by a greedy iteration belongs to C̃K .
In the following, we extend the work of [5] and [46] for a
feasibility check over C̃K by constructing auxiliary bipartite
graphs associating this check with the cardinality of a maximum
matching and by formulating a maximum flow problem.

We introduce the concept of matchings and bipartite graphs.
An undirected graph is called bipartite and denoted as
(V 1, V 2,E) if its vertices are partitioned into V 1 and V 2 while
any edge in E connects a vertex in V 1 to another in V 2. A
matching m is a subset of E if no two edges in m share a vertex
in common. Given a subset L of V 1 ∪ V 2, we say L is covered
by m if any v ∈ L is connected to an edge in m. Matching m is
maximum if it has the largest cardinality among all the matchings
and is perfect if V 2 is covered.

Given the graph G = (V,E) describing system (1), we
first build the following auxiliary bipartite graph to determine
whether an actuator set renders the system structurally control-
lable. Node sets V ′ = {v′1, . . . , v′n} and V ′′ = {v′′1, . . . , v′′n} are
built as two copies of V = {v1, . . . , vn}. For any set S ⊂ V ,
two subsets S ′ ⊂ V ′ and S ′′ ⊂ V ′′ denote two copies of the
set S. For the bipartite graph, we then have V 1 = V ∪ S ′′ and
V 2 = V ′. Next, we define the edge sets. The set E consists of
undirected edges connecting vi with v′j if (vi, vj) ∈ E, whereas
the edge set E1 consists of undirected edges connecting v′k with
v′′k if vk ∈ S. The bipartite graph is then defined by Hb(S) =
(V ∪ S ′′, V ′,E ∪ E1).

If the graph G and the set S pair satisfies the accessibility
condition8 (which is implied by the strong connectivity assump-
tion on G), the set S achieves structural controllability if and
only if there exists a perfect matching inHb(S) (see [46, Th. 2]).
This equivalence directly follows from Hall’s marriage theorem,
which shows that there exists a perfect matching in Hb(S) if
and only if, for any U ⊂ V ′, the nodes in U have at least |U |
unique in-neighbors [10]. Intuitively, to control any node, we
would influence the states of its in-neighbors in the graph. Then,
to steer the nodes in U arbitrarily, this theorem implies that
we should have at least |U | in-neighbors. Otherwise, suppose
two nodes share only a single in-neighbor. Then, these nodes
would always be receiving a proportional influence, making
it impossible to steer the system states arbitrarily. Using this
result, [23] develops a feasibility check for leader selection. This
method states that S lies in C̃K if and only if there is a maximum
matching for the bipartite graphHb(∅) with all the nodes in the
set S ′ ⊂ V ′ unmatched. However, this statement is true only if
we consider the minimum required cardinality for the structural
controllability of the system (see the proof of [23, Lemma 3]).
Later in this section, we provide a counterexample, where the
feasibility check of [23] does not work.

We now provide our feasibility check in the following.
Proposition 7: Given the graph G, the cardinality limit K

and an actuator set S with |S| = k ≤ K, we have S ∈ C̃K if
and only if |m̄(S)| ≥ n−K + k, where m̄(S) is a maximum
matching inHb(S).

Proof: “⇒”: If S ∈ C̃K , there exists Q ∈ CK such that S ⊂
Q. We now invoke the equivalence result from [46, Th. 2]. This
implies the following. By finding a maximum matching m in
Hb(Q) that completely covers Q′′ and then excluding from m
the edges incident with Q′′ \S ′′, we can obtain a matching in
Hb(S) containing n−K + k edges.

“⇐”: We pick any maximum matching inHb(S) and denote
it as m∗. Suppose P ′ is the largest subset in V ′ whose elements
are all missed by m∗, we know |P ′| ≤ K − k. Denote the edge
subset EP ⊂ E as the set that contains all undirected edges
adjacent to v′k for any k such that vk ∈ P . Clearly, EP covers
P ′ and m∗ ∪ EP covers V ′. Since matching m∗ and matching
EP have no common vertices, m∗ ∪ EP is a perfect matching in
Hb(S ∪ P ), which means with the actuator setS ∪ P the system
is structurally controllable. Also considering |S ∪ P | ≤ K, and
S ∪ P ∈ C̃K , we obtain S ∈ C̃K . �

As a remark, [46, Th. 2] associates the existence of a perfect
matching inHb(S) with a membership of S to CK , whereas our
result extends this previous result by associating the cardinality
of a maximum matching in Hb(S) with a membership of S to
C̃K . Since we invoke [46, Th. 2], our proposition also requires the
accessibility condition. However, note that it is already satisfied
by the strong connectivity of G. The proposition above also
provides us with a systematic approach to calculate the smallest
K required for a nonempty C̃K , since we have ∅ ∈ C̃K if and only
if |m̄(∅)| ≥ n−K holds. This method for finding the smallest
K coincides with the ones proposed in [8, Th. 4], [36, Th. 3].

8The graph G and the set S pair satisfies the accessibility condition if for
every node in G there is at least one directed path reaching that node from some
node in S [46] [10, Def. 2]. When G is strongly connected, this condition is
attained irrespective of the nodes chosen in S [10]. We can invoke [46, Th. 2]
because of the equivalence of structural controllability in leader selection and
actuator placement, we established in the proof of Proposition 1.
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Fig. 1. Graph for the four-node system.

Fig. 2. Auxiliary bipartite graphs Hb(∅) and Hb({v3, v4}).

Example 1: Consider a system described by four nodes and
the dynamic equations (1), where

A =

⎡
⎢⎢⎣
0 −0.5 −0.8 −0.6
1 0 0 0

1 0 0 0

1 0 0 0

⎤
⎥⎥⎦ .

G = (V,E) corresponding to this system is in Fig. 1 . For the
metric in (2), let T = 2 and ε = 10−9.

Consider the actuator placement on this system. We first study
the minimum required cardinality for structural controllability.
In the auxiliary bipartite graph Hb(∅) shown in Fig. 2, any
maximum matching consists of 2 edges, that is, |m̄(∅)| = 2. By
Proposition 7, ∅ ∈ C̃K if and only if m̄(∅) ≥ 4−K + 0, that is,
K ≥ 2. Therefore, we need at least two actuators to render the
system structurally controllable. Suppose K = 2. The solution
of the forward greedy is {v3, v4}. We depict the auxiliary bipar-
tite graphHb({v3, v4}) in Fig. 2 to check whether this actuator
set is feasible. Maximum matching contains four edges, thus
m̄({v3, v4}) = 4 ≥ 4− 2 + 2 = n−K + k. By Proposition 7,
{v3, v4} belongs to C̃2.

We now provide a counterexample based on the example
above to show that the feasibility check method in [23] excludes
feasible nodes from the consideration of the forward greedy
algorithm. SupposeK = 3. The feasibility check method in [23]
indicates that {v1} /∈ C̃3, because v′1 is not missed by any maxi-
mum matching inHb(∅). However, since {v3, v4} is structurally
controllable, so is {v1, v3, v4}. Then, {v1} ⊂ {v1, v3, v4} im-
plies that {v1} ∈ C̃3.

For our feasibility check, we still need a method to obtain a
maximum matching inHb(S). It is well-established that this can
equivalently be done by solving a maximum flow problem [47].
We refer to Appendix G for details on formulating a maximum
flow problem to obtain a maximum matching in Hb(S). There
are several algorithms for solving maximum flow problems.
For instance, the Edmonds–Karp algorithm that we adopt in
the numerical studies requires O(pq2) steps, where p and q,
respectively, denote node cardinality and edge cardinality in
the flow graph generated based on Hb(S)[48]. For example,
inHb(∅), p = 2n+ 2 and q = 2n+ |E|. Thus, at each forward
greedy iteration, we can examine in polynomial time whether
v ∪ St belongs to C̃K by finding the cardinality of the maximum
matching inHb(v ∪ Sk).

C. Feasibility Check Over R̃K

The reverse greedy algorithm has to determine whether R ∈
R̃K , or equivalently, whether any subset of the set V \R belongs
to CK . Invoking the equivalence result of [46, Th. 2], we can
conclude that there exists a subset of V \R belonging to CK if
and only if there exists a perfect matching in Hb(V \R) that
covers at most K elements of V ′′ \R′′. This holds, since if every
perfect matching in Hb(V \R) covers K + 1 or more nodes in
V ′′ \R′′, it would not be possible to find K actuators from V \R
satisfying structural controllability.

Recall that a maximum matching can be computed via the
maximum flow algorithm. Analogous to the previous section, we
need a feasibility check method for R̃K by the means of the flow
theory. We refer to Appendix G for the preliminaries regarding
flows in graphs. We first build an auxiliary graph, denoted by
Hr(S), containing all the nodes in Hb(S). We let s and t be
the sink and source of the flow, respectively. In addition, we add
node s′′ to Hr(S), which will enable encoding the cardinality
limit on V ′′ \R′′. The edge set in Hr(S) is the union of three
sets, Ef

b , Ef
s , and Ef

t , all of which are directed. The edge set Ef
b

is a copy of E ∪ E1, originally from Hb(S), but directed from
V ∪ S ′′ to V ′ inHr(S). The edge set Ef

s consists of edges from
s to all the nodes in V and from s′′ to all the nodes in S ′′ along
with edge of from s to s′′. Finally, the edge set Ef

t is composed
of edges from all the nodes in V ′ to t. All the edges have unit
capacity except the edge from s to s′′, which has a capacity ofK.
Utilizing the graphHr(S), we have the following proposition.

Proposition 8: Given the cardinality limitK and an exclusion
set R, we have R ∈ R̃K if and only if there exists a flow g in
(Hr(V \R), c, s, t) with val(g) = n.

Proof: From the definition of R̃K , R ∈ R̃K is equivalent to
the existence of S ⊂ V \R such that S ∈ CK . Via [46, Th. 2],
we know that these two conditions are equivalent to the ex-
istence a perfect matching in Hb(V \R) that covers at most
K elements of V ′′ \R′′. For the following, we prove that this
equivalent condition holds if and only if there exists a flow g in
(Hr(V \R), c, s, t) with val(g) = n.

“⇒”: Given the perfect matching m∗, we use ñ to denote
the number of the elements in V ′′ that are adjacent to m∗.
Clearly, ñ ≤ K. For the following, we build the flow g as a
function of the edges in Hr(V \R). Suppose mf is a subset of
Ef
b that corresponds with m∗ in E ∪ E1. We let g(e) = 1 if e

belongs to mf , g((s, v)) = 1 for any v ∈ V incident with mf ,
g((s′′, v′′)) = 1 for any v′′ ∈ V ′′ incident with mf , g(et) = 1

for any et ∈ Ef
t and finally g((s, s′′)) = ñ. It is easy to check g

is in fact a flow in (Hr(V \R), c, s, t) with val(g) = n.
“⇐”: Let Em = {ef ∈ Ef

b |g(ef ) = 1}. Then, define m∗ =
{e ∈ E ∪ E1|∃ef ∈ Em, where ef is a copy of e}. It follows
from val(g) = n that m∗ is a perfect matching in Hb(V \R).
Since the capacity limits are satisfied by the flow g, there are
no more than K elements in V ′′ \R′′ covered by the perfect
matching m∗. �

Example 2: We apply the reverse greedy algorithm to the sys-
tem studied in Example 1 with K = 2. The first node excluded
is v1. To see that v1 ∈ R̃2, we depictHr(V \v1) in Fig. 3 . The
maximum flow has a value of 4. Invoking Proposition 8, we
conclude that v1 belongs to R̃2.

Similar to Section V-B, we adopt Edmonds–Karp algorithm to
solve the maximum flow problem in the numerical studies. The
algorithm requiresO(pq2) steps, where p and q are, respectively,
the node cardinality and the edge cardinality of the flow graph
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Fig. 3. Auxiliary graph Hr(V \v1).

Fig. 4. Greedy selection versus the optimal selection.

Hr(V \R). For example, in Hr(V ), p = 3n+ 3 and q = 3n+
|E|+ 1, whereE is the edge set ofHr(V ). Thus, at each reverse
greedy iteration, we can examine in polynomial time whether
v ∪Rt belongs to R̃K .

Remark: Greedy algorithms can also be applied when strong
connectivity assumption on G is relaxed. Suppose G is not
strongly connected but it can be decomposed as ∪li=1Gi, where
Gi is strongly connected for any i. In this case, if we suppose
at least one actuator is already chosen and assigned for each
subgraph Gi, we would attain the accessibility condition dis-
cussed in Footnote 9. It is then possible to invoke [46, Th. 2]
for the equivalence between perfect matching and structural
controllability. This would make it possible to extend the proofs
of Propositions 7 and 8 for the case when we are assigning
additional actuators in such graphs. We kindly refer the readers to
[46] and [10] for a detailed discussion on this condition. Similar
to our paper, many works in the literature, such as [10] and [23],
assume that G is strongly connected such that the accessibility
condition is automatically attained.

VI. NUMERICAL RESULTS

In this section, we apply the greedy algorithms to problems
based on randomly generated networks and a large power grid.
All problems are solved on a computer equipped with 8 GB
RAM and a 2.7 GHz dual-core Intel i5 processor.

A. Experiment on a 23-Node Network

We study a system model based on an undirected unweighted
graph given in Fig. 4 generated via Octave Networks Tool-
box [49]. Different degrees are assigned to each vertex such that
we can compare the sets Sf

ε and Sr
ε := V \Rr

ε in terms of node
connectivity. Specifically, vertex i has a degree of i if i < 12 and
a degree of 24− i if i ≥ 12. If there is an edge between vertex i
and j, we set (A)ij = (A)ji = 1, otherwise the corresponding
entries are 0.

Let T = 1 and K = 8. We then apply Algorithm 3 to
obtain a proper parameter ε for the forward greedy algo-
rithm. We set ξ = 2 and ε0 = 10−3 arbitrarily. The actua-
tor set returned in the first iteration is denoted by Sf

ε0
. The

minimum eigenvalue corresponding to WT (S
f
ε0
) is λ1(S

f
ε0
) =

1.9× 10−4. Since ε0 > 2λ1(S
f
ε0
), we continue with the sec-

ond iteration. Let ε1 = λ1(S
f
ε0
) = 1.9× 10−4, we now have

Sf
ε1

= {4, 6, 8, 10, 13, 16, 20, 21} and λ1(S
f
ε1
) = 2.0× 10−4 >

ξ−1ε1. Thus, we can terminate the algorithm and pick εf = ε1
for the forward greedy algorithm. Using the same procedure, we
obtain εr = 1.4× 10−4 for the reverse greedy algorithm. In this
case, the solution is Sr

εr
= V \Rr

εr
= {1, 2, 3, 5, 10, 17, 19, 22}.

To assess the optimality of the setsSf
εf

andSr
εr

, we generate the
optimal solution S∗ = {1, 3, 16, 18, 19, 20, 22, 23} by enumer-
ating all feasible solutions. The average energy consumptions
for all actuator sets are given by F (Sf

εf
) = 9226.5, F (Sr

εr
) =

12126.2, and F (S∗) = 6052.7. For this example, the forward
greedy algorithm returns a better solution than the reverse greedy
algorithm. Later, in randomized examples we see that this is not
generally the case.

Next, we analyze the performance guarantees in (10) and (26)
under the sets Sf

εf
and Sr

εr
. For the forward greedy algorithm, we

computed Fεf(S
f
εf
) = 6188.2 = 0.66F (Sf

εf
). The greedy sub-

modularity ratio for the forward greedy algorithm is computed as
γfg
εf
= 1. Then, we obtain F (Sf

εf
) = 1.5Fεf(S

f
εf
) ≤ 0.75Fεf(∅) +

0.75Fεf(S
∗) = 9.2× 104 + 0.75Fεf(S

∗). In this example, the
appearance of Fεf(∅) in the performance guarantee undermines
its tightness. On the other hand, for the reverse greedy algorithm,
the greedy submodularity ratio of the objective function F r

εr
is

computed as γrg
εr

< 0.01. This value is negligibly small making
the performance guarantee in (26) loose.

B. Node Connectivity Analysis on the Sets Sf
εf

and Sr
εr

To gain additional insights into solution dependence on node
connectivity, we now compare the greedy solutions with the op-
timal solutions in terms of the degrees of the selected actuators.
In the previous study, the forward greedy algorithm selects the
actuator set Sf

εf
in the order of 16, 13, 5, 8, 6, 20, 10, 21. In

this sequence, the first four nodes feature high degrees. This is
because the high degree nodes generally result in larger marginal
gains at the earlier stages of the forward greedy algorithm.
Let dΣ(S) denote the sum of the degrees of all the nodes
in set S. Observe that dΣ(S

f
εf
) = 54, whereas dΣ(S

r
εr
) = 35

and dΣ(S
∗) = 30. This demonstrates that the reverse greedy

algorithm does not have a tendency to pick high degree nodes.
We illustrate these sets in Fig. 4.

To show that this observation is not restricted to this specific
example, we build 20 random graphs with 23 nodes using
Octave [49]. These graphs are built as follows. For i = 1, 4, 7,
node i, node i+ 1, and node i+ 2 have randomized degrees
between i and i+ 2. Node 10 and node 11 have randomized
degrees between 10 and 11. Node 12 has exactly 12 neighbors.
For i > 12, Node i has a degree number the same as that of Node
24− i. For each algorithm run, a proper parameter ε is picked
via Algorithm 3.

Comparisons of different actuator sets can be found in
Tables II and III. The set S∗o refers to the best solution out of
1× 104 random selections of cardinality K = 8, while it is not
computationally feasible to obtain the exact optimal solution
for each case. Table II shows that the forward greedy generally
yields an actuator set with a high degree sum when compared to
the other solutions. Finally, Table III shows that in several cases
the set returned by the forward greedy results in significantly
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TABLE II
DEGREE SUM COMPARISONS OF DIFFERENT SOLUTIONS

TABLE III
METRIC COMPARISONS OF DIFFERENT SOLUTIONS

worse value in the objective than the other two solutions. Gener-
ally, both greedy algorithms achieve comparable performance,
and at the same time much better performance than what the
theoretical guarantees suggest (as in Section VI-A). Thus, it
could be useful to implement both polynomial-time algorithms,
and choose the best solution.

The total computation time for 20 forward greedy algorithm
runs is 8205.0 s, whereas the time for 20 reverse greedy algo-
rithm runs is 665.0 s. It turns out that for this problem the reverse
greedy algorithm requires fewer queries to the computationally
expensive feasibility check problem when compared to the
forward greedy algorithm.

C. Power Electronic Placement for 118-Bus System

We illustrate our results by placing power electronic actua-
tors that can modulate power injections in the IEEE 118-bus
test system, provided in [50]. Similar to [1, §4.B], each bus
is assumed to follow the linearized swing equations, that is,
Miθ̈i +Diθ̇i = Pi −

∑
j aij(θi − θj) for all i ∈ {1, . . . , 118},

wherePi is the net power injection andaij is characterized by the
line parameters. We kindly refer to [51] for the modeling details.
If bus i is not in our actuator set, we have Pi = 0. Buses without
generators are assumed to have no inertia (even when they have
loads connected), and they have a one-dimensional (1-D) state,
since Mi = 0 (inertia). Buses with generators have inertias, and
they are instead associated with a 2-D state vector that includes
both θi and θ̇i. We highlight that each state corresponds to a new
node in our system graph G, which in some sense represents an
extended version of the original 118-bus power network.

Our goal is to choose K = 50, 70 buses out of 118 buses
to inject power to minimize the average energy consumption
given by (2) (T = 1), while ensuring structural controllability.
We take into account the fact that it is not possible to actuate
some of the nodes of our system graph G by excluding them
from the actuator sets and the feasibility check methods. These
nodes correspond to θi originating from buses with inertia, since
the dynamics dθi/dt = θ̇i cannot be actuated.

Next, we implement the greedy algorithms. The results are
shown in Table IV , whereS∗o is the best structurally controllable
solution out of 105 random selections with cardinality K. The

TABLE IV
METRIC COMPARISONS FOR THE IEEE 118-BUS TEST SYSTEM

TABLE V
PERFORMANCE GUARANTEES FOR THE FORWARD GREEDY ALGORITHM

APPLIED TO THE MAXIMIZATION OF INCREASING SET FUNCTIONS

parameters for both greedy algorithms can also be summarized
as follows: ε = 1× 10−10 for K = 50 and ε = 1× 10−8 for
K = 70, chosen arbitrarily. Both greedy algorithms perform
significantly better than random selections. Note that there are
6.2× 1033 and 3.2× 1033 possible combinations to check for
K = 50 and K = 70, respectively. Since the optimal solution
is computationally out of reach, we will not analyse the per-
formance guarantees in (10) and (26) as we did in the previous
sections. In both cases, K = 50 and K = 70, the reverse greedy
performed slightly better than the forward greedy algorithm.
Finally, as we expected, choosing a larger K reduces the control
cost for all three solution concepts. One can decide on K by
evaluating the overall cost reductions from the reductions in the
metric and comparing them with the actuator installation costs.

VII. CONCLUSION

In this article, our goal was to pick an actuator set to minimize
a controllability metric based on average energy consumption
while ensuring that the system is structurally controllable. To
this end, we reformulated our problem as matroid optimization
problems to apply both the forward and reverse greedy algo-
rithms. For each algorithm, we provided a novel performance
guarantee. For the implementation of the algorithms, we pro-
posed feasibility check methods. In the numerics, we studied
networks that are randomly generated based on degree lists. We
observed that the forward greedy tended to select high-degree
nodes in the early stages, whereas the overall performance of
both algorithms were comparable.

Our future work involves exploiting the curvature of the
objective function to derive a better performance guarantee
for the forward greedy algorithm. We will exploit the problem
structure to explain why algorithms performs significantly better
than their performance guarantees. We aim to investigate other
structural controllability concepts from the literature.

APPENDIX

A. Performance Guarantees From the Literature

Before summarizing the relevant guarantees from the litera-
ture, we highlight that if we assign each actuator with a specific
control cost, we would obtain a modular objective. There are
many works that study modular objectives with or without
structural controllability type constraints [1], [11], [37]. In case
our objective is additive/modular, greedy algorithm on a matroid
is known to always return an optimal solution [42].

Table V summarizes the performance guarantees for the for-
ward greedy algorithm applied to the maximization of increasing
set functions. As a remark, [18] defines the curvature as we
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defined in Definition 3, whereas [25] considers only the case,
where S = ∅ and U = V \{v} for all v ∈ V and they call this
notion the total curvature. In addition, the work of [28] provides
1− (α/e) guarantee that holds by high probability for maximiz-
ing increasing submodular functions with curvature over an arbi-
trary matroid constraint. This result relies on linear extensions of
the objective by implementing the continuous greedy algorithm,
which is subject to potential deviations from the guarantee
due to the random rounding procedures. We refer to [28] for
other guarantees from the literature relying on variations of this
algorithm. Finally, [26] relies on a randomized forward greedy
providing guarantees only in expectation (see Appendix B). A
very recent work [27] provides γ/2 guarantee for the forward
greedy algorithm applied to our setting with the submodularity
ratio in Definition 2. This result does not rely on constructing
a linear program. Instead, it relies on [27, Lemma 1], which
has a mistake in its proof. Using the notation of [27], let Gt
be the greedy solution at iteration t, X � be the optimum, and
I be the feasible region of the matroid. In the proof, the au-
thors need to find an enumeration {x�

1, . . . , x
�
n} = X � such that

Gt ∪ {x�
t+1} ∈ I for any t. Starting fromG0 = ∅, their inductive

proof iteratively builds this enumeration by choosingx�
t+1 ∈ X �

with Gt ∪ {x�
t+1} ∈ I. The proof states “|Gt| < |X �| implies

there exist an element x�
t+1 ∈ X � such that Gt ∪ {x�

t+1} ∈ I
(property (iii) of Definition 4)”. However, for their inductive
proof to be correct, they instead have to prove that there exists
an element x�

t+1 ∈ X �\{x�
k}tk=1 such that Gt ∪ {x�

t+1} ∈ I.
We think that this statement could also be proved. In this case,
their guarantee would be better.

The guarantees above take as a reference objective evaluated
at the empty set. The second part of this article studies the reverse
greedy algorithm, where the guarantees are with respect to the
objective evaluated at the full set [see (26) and (9)].

B. Definitions of Submodularity Ratio

Let γ1 denote the submodularity ratio of f from Definition 2.
Observe that γ = γ1 satisfies

γρU (S) ≤
∑

v∈U\S
ρv(S), ∀S,U ⊂ V (27)

which can easily be obtained by decomposing the term on the
left via telescoping sum. However, the largest γ satisfying the
above set of inequalities, denoted as γ2, does not necessarily
satisfy the inequalities in Definition 2. This is true since the
inequalities in (27) can be regarded as a relaxation of those in
Definition 2. Hence, we haveγ2 ≥ γ1. There are previous studies
in the literature defining the submodularity ratio as γ2 instead of
γ1 [16], [18], [26]. In the proof of Theorem 1, as we are deriving
(30), we use the inequalities from Definition 2. One can verify
that the inequalities in (27) would not allow us to derive (30).
Hence, the performance guarantee (7) does not extend to the
submodularity ratio γ2.

In addition, the work of [16] obtains a lower bound for γ2 for
the metric −F in (2) based on eigenvalue inequalities for sum
and product of matrices. One can easily verify that this lower
bound is also applicable to γ1 from Definition 2.

The work of [26] exploited the submodularity ratio (27) and
obtained a guarantee in expectation for the residual random

Fig. 5. Comparison between two guarantees.

(forward) greedy algorithm for matroid optimization problems
featuring weakly submodular objective functions. We denote
the final set returned by this algorithm as SRRG. The guarantee
provided in [26] for this class of randomized algorithms is
E[f(SRRG)]−f(∅)

f(S∗)−f(∅) ≥ γ2
2

(1+γ2)2
. Let γ denote the theoretical lower

bound derived in [16] for −F in (2). This lower bound satisfies
γ2 ≥ γ1 ≥ γ. Since γ is applicable to both (7) and the guarantee
in [26], we let a1(γ) = γ3/(1 + γ3) and a2(γ) = γ2/(1 + γ)2

denote the theoretical guarantees associated with Theorem 1
and the one in [26], respectively. Two functions are plotted in
Fig. 5. The guarantee we derived in Theorem 1 is tighter than the
one from [26], if the lower bound γ > 0.5 (it is also an ex-post
guarantee).

C. Proof of Lemma 2

(i) For any S ⊂ V and any v ∈ V \S, let H(z) =
(WT (S) + zWT ({v}) + εI)−1. Notice that tr(H(1)) =
tr((WT (S ∪ {v}) + εI)−1) = Fε(S ∪ {v}), since WT (S) =∫ T

0 eAτB(S)B�(S)eA
�τdτ is additive, that is, WT (S) +

WT ({v}) = WT (S ∪ {v}). Via the matrix inverse
formula [52], if H(z) is invertible ∀z ∈ (0, 1), then
tr(H(z)) is continuous and differentiable, and we have
d(tr(H(z)))

dz = −tr(H(z)WT ({v})H(z)) < 0. This inequality
holds since H(z) is invertible and symmetric, and WT ({v})
is positive semidefinite. Invoking the mean-value theorem, we
have tr(H(1))− tr(H(0)) < 0.

(ii) Recall from (4) that the submodularity ratio of −Fε,
denoted as γf

ε, satisfies γf
ε = minS,U,v∈V\(S∪U)

ρv(S)
ρv(S∪U) . Since

−Fε is strictly increasing, ρv(S) > 0 and ρv(S ∪ U) > 0 for
any v ∈ V\(S ∪ U). Thus, γf

ε > 0. �

D. Proof of Proposition 1

To prove this theorem, we show that given an actuator set
S, structural controllability of (A,B(S)) can equivalently be
formulated as structural controllability of the system with the
set S chosen as a leader set. Then, we use a result from [23]
showing the matroid structure of the structural controllability
constraints in leader selection problems. This result builds on [5],
which shows the equivalence between structural controllability
and existence of a perfect matching in an auxiliary bipartite
graph whenever the graph G is strongly connected.

Define N = V \S and partition the state vector x into xS and
xN . Our dynamics can equivalently be written as[

ẋN

ẋS

]
=

[
ANN ANS

ASN ASS

][
xN

xS

]
+

[
0 0

0 I|S|

]
u (28)

where I|S| ∈ R|S|×|S| is the identity matrix.
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In the leader selection problem, if the set S is chosen as
a leader set, it is assumed that the values of xS are directly
dictated and are not influenced by the dynamics of xN . Under
this assumption, by treating xS as the input, the dynamics of xN

are given by ẋN = ANNxN +ANSxS . Then, the leader set S
achieves structural controllability if (ANN , ANS) is structurally
controllable, which would allow the values of xN to be steered
to desired positions. Note that it is not clear whether we would
achieve structural controllability when this is chosen as the set
of actuators in actuator placement problem.

From Definition 1, the actuator set S makes the system
structurally controllable if and only if there exists a pair (Â, B̂)
with the same structure as (A,B(S)) such that the controllability
matrix P ∈ Rn×n2

P =

[
0 0 0 ÂNS 0 ÂNN ÂNS + ÂNSÂSS · · ·
0 I|S| 0 ÂSS 0 ÂSN ÂNS + Â2

SS · · ·

]

has full rank. Next, we claim that P has full rank if and
only if the following matrix P̃1 ∈ R|N |×n

2
has full rank, P̃1 =

[0 0 0 ÂNS · · · 0 Âj−1
NN ÂNS · · · ]. To see this, notice that P

has full rank if and only if the submatrix P1 ∈ R|N |×n
2

contain-
ing the first |N | rows of P has full rank. One can then show that
there exists an upper triangular matrix U ∈ Rn2×n2

with unit
diagonal entries such that P̃1 = P1U . Since U is invertible, P̃1

and P1 have the same rank.
Then, we further claim that P̃1 has full rank if and

only if the following matrix P̄1 has full rank P̄1 =

[ÂNS ÂNN ÂNS · · · Â|N |−1NN ÂNS ]. Considering |S| > 0 and
thus |N | − 1 ≤ n− 2, for any i > |N | − 1, Âi

NN ÂNS is in
the span of the matrices Âj

NN ÂNS , j = {0, 1, . . . , |N | − 1} by
Cayley–Hamilton theorem. Hence, P̄1 has the same rank as P̃1.
This proves the claim.

In summary, P has full rank if and only if P̄1 has full rank.
By the definition of P̄1, P̄1 being full rank is equivalent to
controllability of (ÂNN , ÂNS). Hence, structural controllability
of (A,B(S)) is equivalent to that of (ANN , ANS).

Now, define LK = {S| |S| = K and (ANN , ANS) is struc-
turally controllable} and conclude that LK = CK . The set col-
lectionLK consists of all theK cardinality leader sets achieving
structural controllability. From [23, Th. 4], we have that the pair
(V, L̃K), where L̃K := {Ω|∃S ∈ LK such that Ω ⊂ S}, is a
matroid if the graph G is strongly connected. Therefore, the pair
(V, C̃K) is also a matroid. �

E. Proof of Theorem 1

The idea of the proof extends the work in [24], which derives
a performance guarantee for matroid optimization featuring a
submodular objective. To assess the suboptimality of the actuator
set Sf, we need to find an upper bound for f(S∗)− f(Sf). We
denote S∗ = {v∗1, . . . , v∗K} and notice

f(S∗)− f(Sf) ≤ f(S∗ ∪ Sf)− f(Sf)

=

K∑
k=1

ρv∗k({v∗1, . . . , v∗k−1} ∪ Sf) ≤ γ−1
∑

j∈S∗\Sf

ρj(S
f) (29)

where the first inequality is due to the monotonicity of f and the
equality follows from a telescoping sum. The last inequality is

from Definition 2. To further bound
∑

j∈S∗\Sf ρj(S
f), we have the

following lemmas. For these lemmas, define U−1 = ∅, UK =
V , and st = |S∗ ∩ (U t+1\U t)|.

Lemma 5:
∑

j∈S∗\Sf ρj(S
f) ≤ γ−1

∑K
t=1 ρt−1st−1.

Proof: From Definition 2, we have

ρj(S
f) ≤ γ−1ρj(St−1), ∀t ≤ K, ∀j ∈ V. (30)

Since U t1 ⊂ U t2 for any t1 < t2, notice that V = UK =⋃K
t=0(U

t\U t−1). Considering U t1 \U t1−1 and U t2 \U t2−1 are
disjoint, we know that these sets constitute a partition of V .
Since there is no subset of U0 belonging to F , we have
S∗ ∩ U0 = ∅. Using the partition of V , we can partition S∗ as:
S∗ =

⋃K
t=1(S

∗ ∩ (U t\U t−1)). Combining this with (30)

∑
j∈S∗\Sf

ρj(S
f) ≤

∑
j∈S∗

ρj(S
f) =

K∑
t=1

∑
j∈S∗∩(Ut\Ut−1)

1

γ
ρj(S

t−1).

(31)
Notice that all the nodes in U t−1 have been considered by the
feasibility check before vf

t. Since the greedy algorithm first
checks the elements inV \U t−1 with larger marginal gains when
added to U t−1, we have that ρt−1 = maxj∈V\Ut−1 ρj(S

t−1).
Considering V \U t−1 = ∪Ki=t(U

i\U i−1), for any t′ ≥ t

ρt−1 ≥ ρj(S
t−1), ∀j ∈ U t′ \U t′−1. (32)

Thus, for any j ∈ S∗ ∩ (U t\U t−1), we have ρj(S
t−1) ≤ ρt−1

and ∑
j∈S∗∩(Ut\Ut−1)

ρj(S
t−1) ≤ ρt−1st−1. (33)

Now combining (31) and (33), it is straightforward that∑
j∈S∗\Sf ρj(S

f) ≤∑K
t=1 γ

−1ρt−1st−1.
Lemma 6: For any t ∈ {1, . . . ,K}, we have

∑t
i=1 si−1 ≤ t.

The above lemma is proven by [24] for γ = 1, and it holds also
when γ �= 1, since its proof exploits only the matroid structure.
Hence, the proof is omitted.

We use Lemma 6 to obtain an upper bound to the right-hand
side of Lemma 5 and consequently to derive an upper bound of
f(S∗)− f(Sf). The following explains these steps.

Proof of Theorem 1: First, we consider the case in which
ρi, i = 0, . . . ,K − 1, are distinct. We define t1 such that ρt1−1
is the largest among ρ0, ρ1, . . . , ρK−1 and t2 such that ρt2−1
is the largest among ρt1 , ρt1+1, . . . , ρK−1. Following the same
pattern, we have t1, t2, . . . , tp, where tp = K. Since si ≥ 0 is
bounded by Lemma 6, to give an upper bound to the right-hand
side of Lemma 5, we construct a linear program as follows:

max
s0,...,sK−1≥0

K∑
i=1

ρi−1 si−1 s.t.
t∑

i=1

si−1 ≤ t, t = 1, . . . ,K.

(34)
Let s∗i−1, i = 1, 2, . . . ,K, denote the optimal solution.

We claim s∗t1−1 = t1. Otherwise, s∗t1−1 < t1 and due to
Lemma 6 two situations might happen, a)

∑t1
i=1 s

∗
i−1 = t1 or

b)
∑t1

i=1 s
∗
i−1 < t1.

For case a), we obtain
∑t1−1

i=1 s∗i−1 > 0. It follows that there
exists l < t1 such that s∗l−1 > 0. Then, we decrease s∗l−1 by
δ > 0 and increase s∗t1−1 also by δ. The value of δ is small
enough so that s∗l−1 > 0. This operation decreases

∑t
i=1 s

∗
i−1

for l ≤ t ≤ t1 − 1 and keeps the sum unchanged for any other
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t, so the constraints of (34) are not violated. Also considering
that ρ∗t1−1 > ρ∗l−1, after these changes, the objective function is
strictly greater than the value obtained at the original optimum.
Thus, case a) is impossible. For case b), we collect all the
integers l > t1 satisfying s∗l−1 > 0. Assume lq > · · · > l1 > t1.
We have q ≥ 1. Otherwise, s∗l−1 = 0 for any l > t1 and we can
increase s∗t1−1 by a small amount to obtain a greater value of the
objective without violating constraints. Knowing that s∗l1−1 > 0
and following the same reasoning provided for the case a), we
increase s∗t1−1 and decrease s∗l1−1 with the same amount. This
way, an objective value is obtained larger than that evaluated at
the original optimum. Thus, case b) is impossible.

In conclusion, s∗t1−1 = t1 and (34) is equivalent to

max
st1 ,...,sK−1≥0

K∑
i=t1+1

ρi−1si−1

s.t.
t∑

i=t1+1

si−1 ≤ t− t1, t = t1 + 1, . . . ,K. (35)

We determine s∗t2−1 in the same way as we determine s∗t1−1 in
(34). By repeating the above procedure we obtain the solution

s∗i−1 =

⎧⎨
⎩
t1, if i = t1
tj − tj−1, if i = tj and j �= 1
0, otherwise.

(36)

If ρi, i = 0, . . . ,K − 1 are not distinct and there exist i1 <
i2 < · · · < iq with ρi1 = ρi2 = · · · = ρiq . We let s∗i1 = · · · =
s∗iq−1 = 0 and obtain the same solution as (36). Next, notice

ρi2 =f(Si2+1)−f(Si2)≤γ−1(f(Si1 ∪ vf
i2+1)−f(Si1))≤ ρi1

γ
(37)

where the first inequality comes from the definition of sub-
modularity ratio, while the second is due to (32). Substitut-
ing the optimal solution into the objective, considering (37),
we have

K∑
i=1

ρi−1s∗i−1= t1ρt1−1+ · · ·+ (tp − tp−1)ρtp−1

≤γ−1
p∑

k=1

tk∑
i=tk−1+1

ρi−1=γ−1
K∑
i=1

ρi−1=γ−1(f(Sf)−f(∅)).

(38)
Combining (29), Lemma 5 and (38), we have f(S∗)− f(Sf) ≤
γ−1

∑
j∈S∗\Sf ρj(S

f) ≤ γ−2
∑K

i=1 ρi−1s
∗
i−1 ≤ γ−3(f(Sf)−

f(∅)). By rewriting this, we have f(Sf)−f(∅)
f(S∗)−f(∅) ≥ γ3

γ3+1 . �

F. Proof of Proposition 2

Let ρi(S) = −Fε(S ∪ {i})− (−Fε(S)). Given S and U , we
denote Y = U \S and R = V\(S ∪ U). Notice that if i /∈ S ∪
U, ρi(S)

ρi(S∪U) =
F r

ε(R∪Y )−F r
ε(R∪Y\{i})

F r
ε(R)−F r

ε(R\{i}) . From Definitions 2 and 3,
we know that for all possible combinations of S and U , the left-
hand side has the least upper bound 1/(1− αf

ε) and the greatest
lower bound γf

ε while the right-hand side has the least upper
bound 1/γr

ε and the greatest lower bound 1− αr
ε. Consequently,

we obtain γr
ε = 1− αf

ε and αr
ε = 1− γf

ε. �

G. Formulation of the Maximum Flow Problem

Given a directed graph D with nodes s (the source) and t
(the sink), denote the node set as V (D) and the edge set as
E(D). Suppose no edge is directed into s or out of t. Let
c : E(D)→ R+ assign to any edge (u, v) in E(D) c(u, v) ∈
R+ called the capacity. Any g : E(D)→ R+ is called a flow
in (D, c, s, t) if it satisfies: a)

∑
u g(u,w) =

∑
v g(w, v) for

any w ∈ V (D)\{s, t} and b) g(u, v) ≤ c(u, v) for all (u, v) ∈
E(D). The first is the balance, whereas the second is the capacity
limits.

∑
w g(s, w) is called the value of g denoted as val(g).

The problem is to find the flow with the maximum value. For
the undirected bipartite graph Hb(S), we direct all the edges
from V to V ′ and place nodes s and t. Directed edges are built
from s to all the nodes in V ∪ V ′′ and from all the nodes in V ′

to t. Based on this D, we construct a capacity function such
that c(u, v) = 1 for any (u, v) ∈ E(D). The maximum value
of a flow in (D, c, s, t) is equivalent to the cardinality of the
maximum matching inHb(S) [47].
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