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a b s t r a c t 

We provide a counterexample to the performance guarantee obtained in the paper “Il’ev, V., Linker, N., 

2006. Performance guarantees of a greedy algorithm for minimizing a supermodular set function on co- 

matroid”, which was published in Volume 171 of the European Journal of Operational Research. We point 

out where this error originates from in the proof of the main theorem. 
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. Problem formulation 

Let U be a finite set with | U| = n . Let hereditary system H =
(U, D) denote a comatroid, where the family D denotes the de-

endence system, and let f : 2 U → R + denote a set function. Il’ev

nd Linker (2006) consider solving 

in { f (X ) : X ∈ C} , (1)

here C is the family given by all circuits of a comatroid H =
(U, D) with girth p , and f is supermodular, nonincreasing, and

f (U) = 0 . We refer to ( Il’ev & Linker, 2006 ) and ( Il’ev, 2003 ) for

he definitions relating to comatroids and hereditary systems. 

This problem is known to be NP-hard since the well-known p -

edian problem can be captured as a special case. As a heuristic,

l’ev and Linker (2006) propose the greedy descent algorithm (also

nown as reverse greedy or stingy algorithm), which proceeds as

ollows: 

Greedy descent algorithm: 

Step 0: Set X 0 = U. Go to Step 1. 

Step i: ( i ≥ 1): Select x i ∈ X i −1 such that 

d x i (X i −1 ) = min 
x ∈ X i −1 

X i −1 \{ x }∈D 
d x (X i −1 ) , (2) 

where d x (X ) = f (X \ { x } ) − f (X ) is the marginal increment in f when 

removing { x } from the set X . Set X i = X i −1 \ { x i } . If i = n − p, then stop. 

Otherwise go to Step i + 1 . 

End. 
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The paper contained the following theorem regarding the sub-

ptimality bound of the greedy heuristic when applied to (1) . 

heorem 1 ( Il’ev and Linker, 2006 , Theorem 1) . Let OPT be an opti-

al solution to (1) on an arbitrary comatroid and GR be the solution

eturned by the greedy descent algorithm. Then, 

f ( GR ) 

f ( OPT ) 
≤ 1 

t 

((
1 + 

t 

q 

)q 

− 1 

)
, 

here q = n − p, t = s/ 1 − s, and s is the solution to the following

roblem 

 = max 
x ∈ U, 

f ({ x } ) < f (∅ ) 

( f (∅ ) − f ({ x } )) − ( f (U \ { x } ) − f (U)) 

( f (∅ ) − f ({ x } )) . 

In the following, we provide a counterexample showing that the

uarantee in Theorem 1 does not necessarily hold. Then, we point

ut the mistake found in ( Il’ev and Linker, 2006 , Lemma 1), which

s utilized in constructing the linear program ( Il’ev and Linker,

006 , equation (8)) in the proof of Theorem 1 . 

. Counterexample 

Set n = 4 , U = { 1 , 2 , 3 , 4 } . Consider the following nonincreasing

upermodular function: 

f (∅ ) = 6 , f ({ 1 } ) = 4 , f ({ 2 } ) = 5 , f ({ 3 } ) = 4 , f ({ 4 } ) = 4 , 

f ({ 3 , 4 } ) = 2 , f ({ 1 , 2 } ) = 3 , f ({ 2 , 4 } ) = 3 , 

f ({ 2 , 3 } ) = 3 , f ({ 1 , 4 } ) = 2 , f ({ 1 , 3 } ) = 2 , 

f ({ 1 , 2 , 3 } ) = 1 , f ({ 2 , 3 , 4 } ) = 1 , f ({ 1 , 3 , 4 } ) = 1 , 

f ({ 1 , 2 , 4 } ) = 1 , f ({ 1 , 2 , 3 , 4 } ) = f (U) = 0 . 
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Compute the steepness s of function f : 

s = 

(6 − 4) − (1 − 0) 

(6 − 4) 
= 0 . 5 . 

Hence, t = 1 . Define the comatroid H = (U, D) as follows: 

D = { U = { 1 , 2 , 3 , 4 } , 
{ 2 , 3 , 4 } , { 1 , 3 , 4 } , { 1 , 2 , 4 } , { 1 , 2 , 3 } , 
{ 1 , 2 } , { 1 , 4 } , { 2 , 3 } , { 3 , 4 }} . 

Note that girth is given by p = 2 , thus q = 2 . This comatroid

was previously studied in ( Il’ev and Linker, 2006 , Remark 3).

Clearly, the family given by all circuits of this comatroid is C =
{{ 1 , 2 } , { 1 , 4 } , { 2 , 3 } , { 3 , 4 }} . 

Consider (1) with the comatroid H = (U, D) and the objec-

tive f . The greedy descent algorithm can find the solution GR =
{ 1 , 2 } , whereas an optimal solution is given by OPT = { 3 , 4 } .
Theorem 1 claims 

3 

2 

= 

f ( GR ) 

f ( OPT ) 
≤ 1 

t 

((
1 + 

t 

q 

)q 

− 1 

)
= 

1 

1 

((
1 + 

1 

2 

)2 

− 1 

)
= 1 . 25 , 

which is not correct. As a remark, observe that in this example

the selection done in Step 1 by (2) is not unique. We can obtain

GR = { 1 , 2 } (or GR = { 2 , 3 } ) if X 1 = { 1 , 2 , 3 } is chosen in Step 1. If

X 1 = { 1 , 3 , 4 } , greedy descent can find an optimal solution. This

statement also holds for X 1 = { 2 , 3 , 4 } and X 1 = { 1 , 2 , 4 } . 

3. The error in the proof of the main theorem 

Denote the complements by X = U \ X . The proof of ( Il’ev

and Linker, 2006 , Theorem 1) relies on ( Il’ev and Linker, 2006 ,

Lemma 1). This lemma exploits the following inequality in its

proof. 

Inequality 1. 

∑ 

b∈ OPT \ X i −1 

d b (X i −1 ) ≥ | OPT \ X i −1 | d x i (X i −1 ) . 

The above inequality and the resulting ( Il’ev and Linker, 2006 ,

Lemma 1) is then utilized in constructing the linear program in

( Il’ev and Linker, 2006 , Eq. (8)). However, Inequality 1 is not nec-

essarily true. For instance, in the above counterexample, x 2 = 3 ,

X 1 = { 1 , 2 , 3 } , OPT = { 3 , 4 } , and OPT \ X 1 = { 1 , 2 } . For i = 2 , insert-

ing d 1 (X 1 ) = 2 , d 2 (X 1 ) = 1 , and d 3 (X 1 ) = 2 into Inequality 1 , we

obtain 

d 1 (X 1 ) + d 2 (X 1 ) = 2 + 1 ≥ 2 × 2 = 2 × d 3 (X 1 ) , 

which is not correct. 

As an insight, the authors conclude Inequality 1 using the fol-

lowing statement: 

“By (2) , for every b ∈ OPT \ X i −1 , it holds that d b (X i −1 ) ≥
d x i (X i −1 ) . ”

This is equivalent to 

d b (X i −1 ) ≥ d x i (X i −1 ) , ∀ b ∈ X i −1 \ OPT . 

For the above inequality to hold by (2) , for any b ∈ X i −1 \ OPT ,

we should have X i −1 \ b ∈ D. This is not necessarily true. For in-

stance, in the above example, X 1 = { 1 , 2 , 3 } and OPT = { 3 , 4 } , but

2 ∈ X i −1 \ OPT is not considered by the step found in (2) , since

X 1 \ { 2 } / ∈ D. As a remark, the above inequality is correct for p -

uniform comatroids, that is, D = { D ⊂ U : | D | ≥ p} . Note that from

the point of view of applications this is an important case because
he well-known p -median problem is a particular case of the con-

idered problem just on p -uniform comatroids. 

. Correction to the error in Inequality 1 

In our works ( Guo, Karaca, Summers, & Kamgarpour, 2019a;

019b ), we studied a greedy heuristic for a problem similar

o (1) where the constraint set is instead the base of a matroid, and

he objective is neither supermodular nor submodular but charac-

erized by the notions of curvature and submodularity ratio. In-

oking ideas from ( Guo, Karaca, Summers, and Kamgarpour, 2019b ,

emma 4), it is possible to revise and correct Inequality 1 . 

nequality 2. ∑ 

∈ OPT \ X i −1 

d b (X i −1 ) ≥ (q − (i − 1)) d x i (X i −1 ) . 

roof. From the properties of comatroids derived originally in

 Il’ev, 2003 , Theorem 2: Statement (D2)), it can be verified that

here exist | X i −1 | − | OPT | distinct elements from X i −1 \ OPT such

hat after the exclusion of these elements from X i −1 , we still obtain

 set that lies in the comatroid. Let R ⊆ X i −1 \ OPT denote one such

ubset with exactly | X i −1 | − | OPT | = n − (i − 1) − p = q − (i − 1) el-

ments. We then obtain the following, ∑ 

∈ OPT \ X i −1 

d b (X i −1 ) = 

∑ 

b∈ X i −1 \ OPT 

d b (X i −1 ) 

≥
∑ 

b∈ R 
d b (X i −1 ) ≥ (q − (i − 1)) d x i (X i −1 ) . 

he first equality comes from OPT \ X i −1 = X i −1 \ OPT . The first in-

quality follows since function d maps to nonnegative real num-

ers. The fact that X i −1 \ { x } ∈ D for all x ∈ R and the definition in

2) conclude the last inequality. �

In contrast to Inequality 1 , Inequality 2 involves a factor that

s independent of the greedy and the optimal solutions. However,

his factor is smaller since (q − (i − 1)) ≤ | OPT \ X i −1 | . Revisiting

ur counterexample, for i = 2 inserting d 1 (X 1 ) = 2 , d 2 (X 1 ) = 1 , and

 3 (X 1 ) = 2 into Inequality 2 , we obtain 

 1 (X 1 ) + d 2 (X 1 ) = 2 + 1 ≥ 1 × 2 = 1 × d 3 (X 1 ) , 

hich is correct. As a future work, it would be interesting to re-

ne ( Il’ev and Linker, 2006 , Theorem 1) according to Inequality 2 .

e would like to point out that we believe ( Il’ev and Linker, 2006 ,

heorem 2) is correct for general comatroids. ( Il’ev and Linker,

006 , Theorem 3) is also correct for general comatroids, since this

heorem can be proved by another method similar to the method

f proving ( Il’ev, 2003 , Theorem 5). Finally, ( Il’ev & Il’eva, 2018 )

rovides another bound on the worst-case behaviour of the reverse

reedy algorithm for the considered problem. This bound (1 + t) is

ften better than the bound in ( Il’ev and Linker, 2006 , Theorem 1),

ee ( Il’ev and Il’eva, 2018 , Remark 4). 
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